SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Melke Jonas) ;pers:(Betancur Catalina)"

Sökning: WFRF:(Melke Jonas) > Betancur Catalina

  • Resultat 1-5 av 5
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  •  
2.
  • Durand, Christelle M, et al. (författare)
  • Expression and genetic variability of PCDH11Y, a gene specific to Homo sapiens and candidate for susceptibility to psychiatric disorders.
  • 2006
  • Ingår i: American Journal of Medical Genetics. Part B, Neuropsychiatric Genetics : The Official Publication of the International Society of Psychiatric Genetics. - : Wiley. - 1552-4841. ; 141:1, s. 67-70
  • Tidskriftsartikel (refereegranskat)abstract
    • Synaptogenesis, the formation of functional synapses, is a crucial step for the development of the central nervous system. Among the genes involved in this process are cell adhesion molecules, such as protocadherins and neuroligins, which are essential factors for the identification of the appropriate partner cell and the formation of synapses. In this work, we studied the expression and the genetic variability of two closely related members of the protocadherin family PCDH11X/Y, located on the X and the Y chromosome, respectively. PCDH11Y is one of the rare genes specific to the hominoid lineage, being absent in other primates. Expression analysis indicated that transcripts of the PCDH11X/Y genes are mainly detected in the cortex of the human brain. Mutation screening of 30 individuals with autism identified two PCDH11Y polymorphic amino acid changes, F885V and K980N. These variations are in complete association, appeared during human evolution approximately 40,000 years ago and represent informative polymorphisms to study Y chromosome variability in populations. We studied the frequency of these variants in males with autism spectrum disorders (n = 110), attention deficit hyperactivity disorder (ADHD; n = 61), bipolar disorder (n = 61), obsessive-compulsive disorder (n = 51), or schizophrenia (n = 61) and observed no significant differences when compared to ethnically-matched control populations. These findings do not support the role of PCDH11Y, or more generally of a frequent specific Y chromosome, in the susceptibility to these neuropsychiatric disorders.
  •  
3.
  • Henningsson, Susanne, 1977, et al. (författare)
  • Possible association between the androgen receptor gene and autism spectrum disorder.
  • 2009
  • Ingår i: Psychoneuroendocrinology. - : Elsevier BV. - 0306-4530 .- 1873-3360. ; 34:5, s. 752-761
  • Tidskriftsartikel (refereegranskat)abstract
    • Autism is a highly heritable disorder but the specific genes involved remain largely unknown. The higher prevalence of autism in men than in women, in conjunction with a number of other observations, has led to the suggestion that prenatal brain exposure to androgens may be of importance for the development of this condition. Prompted by this hypothesis, we investigated the potential influence of variation in the androgen receptor (AR) gene on the susceptibility for autism. To this end, 267 subjects with autism spectrum disorder and 617 controls were genotyped for three polymorphisms in exon 1 of the AR gene: the CAG repeat, the GGN repeat and the rs6152 SNP. In addition, parents and affected siblings were genotyped for 118 and 32 of the cases, respectively. Case-control comparisons revealed higher prevalence of short CAG alleles as well as of the A allele of the rs6152 SNP in female cases than in controls, but revealed no significant differences with respect to the GGN repeat. Analysis of the 118 families using transmission disequilibrium test, on the other hand, suggested an association with the GGN polymorphism, the rare 20-repeat allele being undertransmitted to male cases and the 23-repeat allele being overtransmitted to female cases. Sequencing of the AR gene in 46 patients revealed no mutations or rare variants. The results lend some support for an influence of the studied polymorphisms on the susceptibility for autism, but argue against the possibility that mutations in the AR gene are common in subjects with this condition.
  •  
4.
  • Leblond, Claire S, et al. (författare)
  • Genetic and functional analyses of SHANK2 mutations suggest a multiple hit model of autism spectrum disorders.
  • 2012
  • Ingår i: PLoS Genetics. - : Public Library of Science (PLoS). - 1553-7390 .- 1553-7404. ; 8:2
  • Tidskriftsartikel (refereegranskat)abstract
    • Autism spectrum disorders (ASD) are a heterogeneous group of neurodevelopmental disorders with a complex inheritance pattern. While many rare variants in synaptic proteins have been identified in patients with ASD, little is known about their effects at the synapse and their interactions with other genetic variations. Here, following the discovery of two de novo SHANK2 deletions by the Autism Genome Project, we identified a novel 421 kb de novo SHANK2 deletion in a patient with autism. We then sequenced SHANK2 in 455 patients with ASD and 431 controls and integrated these results with those reported by Berkel et al. 2010 (n=396 patients and n=659 controls). We observed a significant enrichment of variants affecting conserved amino acids in 29 of 851 (3.4%) patients and in 16 of 1,090 (1.5%) controls (P=0.004, OR=2.37, 95% CI=1.23-4.70). In neuronal cell cultures, the variants identified in patients were associated with a reduced synaptic density at dendrites compared to the variants only detected in controls (P=0.0013). Interestingly, the three patients with de novo SHANK2 deletions also carried inherited CNVs at 15q11-q13 previously associated with neuropsychiatric disorders. In two cases, the nicotinic receptor CHRNA7 was duplicated and in one case the synaptic translation repressor CYFIP1 was deleted. These results strengthen the role of synaptic gene dysfunction in ASD but also highlight the presence of putative modifier genes, which is in keeping with the "multiple hit model" for ASD. A better knowledge of these genetic interactions will be necessary to understand the complex inheritance pattern of ASD.
  •  
5.
  • Melke, Jonas, 1971, et al. (författare)
  • Abnormal melatonin synthesis in autism spectrum disorders.
  • 2008
  • Ingår i: Molecular Psychiatry. - : Springer Science and Business Media LLC. - 1359-4184 .- 1476-5578. ; 13:1, s. 90-98
  • Tidskriftsartikel (refereegranskat)abstract
    • Melatonin is produced in the dark by the pineal gland and is a key regulator of circadian and seasonal rhythms. A low melatonin level has been reported in individuals with autism spectrum disorders (ASD), but the underlying cause of this deficit was unknown. The ASMT gene, encoding the last enzyme of melatonin synthesis, is located on the pseudo-autosomal region 1 of the sex chromosomes, deleted in several individuals with ASD. In this study, we sequenced all ASMT exons and promoters in individuals with ASD (n=250) and compared the allelic frequencies with controls (n=255). Non-conservative variations of ASMT were identified, including a splicing mutation present in two families with ASD, but not in controls. Two polymorphisms located in the promoter (rs4446909 and rs5989681) were more frequent in ASD compared to controls (P=0.0006) and were associated with a dramatic decrease in ASMT transcripts in blood cell lines (P=2 x 10(-10)). Biochemical analyses performed on blood platelets and/or cultured cells revealed a highly significant decrease in ASMT activity (P=2 x 10(-12)) and melatonin level (P=3 x 10(-11)) in individuals with ASD. These results indicate that a low melatonin level, caused by a primary deficit in ASMT activity, is a risk factor for ASD. They also support ASMT as a susceptibility gene for ASD and highlight the crucial role of melatonin in human cognition and behavior.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-5 av 5

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy