SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Menon Ashok S.) ;pers:(Menon Ashok S.)"

Sökning: WFRF:(Menon Ashok S.) > Menon Ashok S.

  • Resultat 1-10 av 16
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Chang, Ribooga, et al. (författare)
  • Deciphering the existence of hexagonal sodium zirconate CO2 sorbent
  • Annan publikation (övrigt vetenskapligt/konstnärligt)abstract
    • Sodium zirconate (sodium zirconium oxide; Na2ZrO3) is amongst the most investigated carbon dioxide (CO2) sorbent. Na2ZrO3 is renowned for its high capture capacity and cyclic stability. It can effectively capture CO2 at temperatures that are found in industrial processes such as the manufacture of steel or cement. Na2ZrO3 is reported to adopt monoclinic, hexagonal, and cubic structures since it was first discussed in the 1960s. Researchers relied on the differences in the relative intensities between two peaks (2θ ~ 16.2 and 38.7 °) in the powder X-ray diffraction (PXRD) pattern to determine the phase of this compound. It is also widely believed that the CO2 capture performance of Na2ZrO3 is related to the crystal structure, yet the crystal structure of hexagonal Na2ZrO3 has remained elusive. With the use of 3D electron diffraction (3D ED), X-ray photoelectron spectroscopy (XPS), and PXRD, we show that the hexagonal Na2ZrO3 does not exist. The so-called hexagonal Na2ZrO3 is Na2ZrO3 with three different types of disorder. Furthermore, the two PXRD peaks (2θ ~ 16.2 and 38.7 °) cannot be used to distinguish the different phases of Na2ZrO3, as the changes in the PXRD pattern are related to the extent of structure disorder. Finally, we also show that the CO2 capture properties of Na2ZrO3 are related to the Na+ site occupancy between different Na2ZrO3 samples, and not differences in crystal structures. The findings from our work shows that the current literature discussion on the structure of Na2ZrO3 is misleading. In order to further develop Na2ZrO3 as well as other mixed-metal oxides for applications, their structures, as well as any disorder, needs be understood using the methods shown in this study.
  •  
2.
  •  
3.
  • Chien, Yu-Chuan, et al. (författare)
  • Development of operando XRD coin cells for lithium-sulfur batteries
  • 2018
  • Konferensbidrag (övrigt vetenskapligt/konstnärligt)abstract
    • Lithium-sulfur (Li-S) batteries has been regarded as one of the promising technology for the next generation of rechargeable batteries due to its high theoretical energy density (2600 Wh/kg [1]). Several works [2–7] on operando X-ray diffraction (XRD) of the Li-S system have been published; however, their experimental setups showed one or more of the following drawbacks. First, the amount of electrolyte was often not reported or would be considered too high for a common Li-S cell, which has been demonstrated to have a significant impact on the behavior of the system [8]. Another issue is the non-uniform stack pressure and electron conductivity of the operando cell setup, whose effects were found by both experiments and simulations [9].This work aims to tackle with the above-mentioned issues by modifying commercial coin cells and using X-ray transparent metal, beryllium, as the spacers. By doing so, the electron conductivity and stack pressure can be expected to be uniform throughout the electrodes. The amount of electrolyte can also be precisely controlled since no vacuum-sealing is required for coin cells. A preliminary diffraction pattern obtained with the cell setup can be seen in Fig. 1. With electrochemical properties similar to common Li-S cells, ‘online’ electrochemical characterization techniques, e.g. Intermittent Current Interruption (ICI) method for following cell resistance [10], will be applicable with operando XRD, revealing more information about this complex system.Figure 1 XRD patterns of alpha-S and electrode material in the modified coin cell.References[1] J. Tan, et al., Nanoscale (2017) 19001–19016.[2] J. Nelson, et al., J. Am. Chem. Soc. 134 (2012) 6337–6343.[3] N.A. Cañas, et al., J. Power Sources 226 (2013) 313–319.[4] S. Waluś, et al., Chem. Commun. 49 (2013) 7899.[5] M. a. Lowe, et al., RSC Adv. 4 (2014) 18347.[6] J. Kulisch, et al., Phys. Chem. Chem. Phys. 16 (2014) 18765–18771.[7] J. Conder, et al., Nat. Energy 2 (2017) 1–7.[8] M.J. Lacey, ChemElectroChem (2017) 1–9.[9] O.J. Borkiewicz, et al., J. Phys. Chem. Lett. 6 (2015) 2081–2085.[10] M.J. Lacey, et al., Chem. Commun. 51 (2015) 16502–16505.
  •  
4.
  • Chien, Yu-Chuan, 1990-, et al. (författare)
  • Rapid determination of solid-state diffusion coefficients in Li-based batteries via intermittent current interruption method
  • 2023
  • Ingår i: Nature Communications. - : Springer Nature. - 2041-1723. ; 14:1
  • Tidskriftsartikel (refereegranskat)abstract
    • The galvanostatic intermittent titration technique (GITT) is considered the go-to method for determining the Li+ diffusion coefficients in insertion electrode materials. However, GITT-based methods are either time-consuming, prone to analysis pitfalls or require sophisticated interpretation models. Here, we propose the intermittent current interruption (ICI) method as a reliable, accurate and faster alternative to GITT-based methods. Using Fick’s laws, we prove that the ICI method renders the same information as the GITT within a certain duration of time since the current interruption. Via experimental measurements, we also demonstrate that the results from ICI and GITT methods match where the assumption of semi-infinite diffusion applies. Moreover, the benefit of the non-disruptive ICI method to operando materials characterization is exhibited by correlating the continuously monitored diffusion coefficient of Li+ in a LiNi0.8Mn0.1Co0.1O2-based electrode to its structural changes captured by operando X-ray diffraction measurements.
  •  
5.
  • Chien, Yu-Chuan, 1990-, et al. (författare)
  • Simultaneous Monitoring of Crystalline Active Materials and Resistance Evolution in Lithium-Sulfur Batteries
  • 2020
  • Ingår i: Journal of the American Chemical Society. - : AMER CHEMICAL SOC. - 0002-7863 .- 1520-5126. ; 142:3, s. 1449-1456
  • Tidskriftsartikel (refereegranskat)abstract
    • Operando X-ray diffraction (XRD) is a valuable tool for studying secondary battery materials as it allows for the direct correlation of electrochemical behavior with structural changes of crystalline active materials. This is especially true for the lithium-sulfur chemistry, in which energy storage capability depends on the complex growth and dissolution kinetics of lithium sulfide (Li2S) and sulfur (S-8) during discharge and charge, respectively. In this work, we present a novel development of this method through combining operando XRD with simultaneous and continuous resistance measurement using an intermittent current interruption (ICI) method. We show that a coefficient of diffusion resistance, which reflects the transport properties in the sulfur/carbon composite electrode, can be determined from analysis of each current interruption. Its relationship to the established Warburg impedance model is validated theoretically and experimentally. We also demonstrate for an optimized electrode formulation and cell construction that the diffusion resistance increases sharply at the discharge end point, which is consistent with the blocking of pores in the carbon host matrix. The combination of XRD with ICI allows for a direct correlation of structural changes with not only electrochemical properties but also energy loss processes at a nonequilibrium state and, therefore, is a valuable technique for the study of a wide range of energy storage chemistries.
  •  
6.
  • Chien, Yu-Chuan, 1990-, et al. (författare)
  • Understanding the Impact of Precipitation Kinetics on the Electrochemical Performance of Lithium–Sulfur Batteries by Operando X-ray Diffraction
  • 2022
  • Ingår i: The Journal of Physical Chemistry C. - : American Chemical Society (ACS). - 1932-7447 .- 1932-7455. ; 126:6, s. 2971-2979
  • Tidskriftsartikel (refereegranskat)abstract
    • The complex reaction mechanism of the lithium–sulfur battery system consists of re-petitive dissolution and precipitation of the sulfur-containing species in the positiveelectrode. In particular, the precipitation of lithium sulfide (Li2S) during discharge hasbeen considered a crucial factor for achieving a high degree of active material utiliza-tion. Here, the influence of electrolyte amount, electrode thickness, applied current andelectrolyte salt on the formation of Li2S is systematically investigated in a series ofoperando X-ray diffraction experiments. Through a combination of simultaneous dif-fraction and resistance measurements, the evolution of the intensity from Li2S is di-rectly correlated to the variation in internal resistance and transport properties insidethe positive electrode. The correlation indicates that at different stages, the Li2S precip-itation both facilitates and impedes the discharge process. The kinetic information ofLi2S formation offers mechanistic explanations for the strong impact of different elec-trochemical cell parameters on the performance and thus, directions for holistic optimi-zations to achieve high sulfur utilization.
  •  
7.
  • Fritze, Stefan, et al. (författare)
  • Magnetron sputtering of carbon supersaturated tungsten films-A chemical approach to increase strength
  • 2021
  • Ingår i: Materials & design. - : Elsevier. - 0264-1275 .- 1873-4197. ; 208
  • Tidskriftsartikel (refereegranskat)abstract
    • Tungsten (W)-based materials attract significant attention due to their superior mechanical properties. Here, we present a chemical approach based on the addition of carbon (C) for increased strength via the combination of three strengthening mechanisms in W thin films. W:C thin films with C concentrations up to-4 at.% were deposited by magnetron sputtering. All films exhibit a body-centred-cubic structure with strong texture and columnar growth behaviour. X-ray and electron diffraction measurements suggest the formation of supersaturated W:C solid solution phases. The addition of C reduced the average column width from-133 nm for W to-20 nm for the film containing-4 at.% C. The column refinement is explained by a mechanism where C acts as re-nucleation sites. The W film is-13 GPa hard, while the W:C films achieve a peak hardness of-24 GPa. The W:C films are-11 GPa harder than the W film, which is explained by a combination of grain refinement strengthening, solid solution strengthening and increased dislocation density. Additional micropillar compression tests showed that the flow stress increased upon C addition, from-3.8 to-8.3 GPa and no brittle fracture was observed.
  •  
8.
  • Menon, Ashok S., et al. (författare)
  • A Crystallographic Reinvestigation of Li1.2Mn0.6Ni0.2O2
  • Annan publikation (övrigt vetenskapligt/konstnärligt)abstract
    • Despite substantial research interest, the crystallography of the promising Li-ion positive electrode material, Li1.2Mn0.6Ni0.2O2, remains disputed. The dispute is predicated on the description of the cationic arrangement in the structure, and multiple structure models have been proposed. This study attempts to provide a fresh perspective to this debate through a multi-scalar structural characterisation of Li1.2Mn0.6Ni0.2O2. Combining Bragg diffraction, transmission electron microscopy and magnetic measurements with reverse Monte Carlo analysis of total scattering data, a quantitative structural description of Li1.2Mn0.6Ni0.2O2 is developed and the existing single- and multi-phase structural descriptions of this compound have been unified. Furthermore, the merits and drawbacks of each technique is evaluated with respect to the crystallography of Li1.2Mn0.6Ni0.2O2 to explain the factors that have contributed to the lack of clarity pervading the structural description of this material. It is envisioned that a better understanding of the crystallography of Li1.2Mn0.6Ni0.2O2 contributes to harnessing the electrochemical potential of this compound.  
  •  
9.
  • Menon, Ashok S., et al. (författare)
  • Influence of Synthesis Routes on the Crystallography, Morphology, and Electrochemistry of Li2MnO3
  • 2020
  • Ingår i: ACS Applied Materials and Interfaces. - : American Chemical Society (ACS). - 1944-8244 .- 1944-8252. ; 12:5, s. 5939-5950
  • Tidskriftsartikel (refereegranskat)abstract
    • With the potential of delivering reversible capacities of up to 300 mAh/g, Li-rich transition-metal oxides hold great promise as cathode materials for future Li-ion batteries. However, a cohesive synthesis-structure-electrochemistry relationship is still lacking for these materials, which impedes progress in the field. This work investigates how and why different synthesis routes, specifically solid-state and modified Pechini sol-gel methods, affect the properties of Li2MnO3, a compositionally simple member of this material system. Through a comprehensive investigation of the synthesis mechanism along with crystallographic, morphological, and electrochemical characterization, the effects of different synthesis routes were found to predominantly influence the degree of stacking faults and particle morphology. That is, the modified Pechini method produced isotropic spherical particles with approximately 57% faulting and the solid-state samples possessed heterogeneous morphology with approximately 43% faulting probability. Inevitably, these differences lead to variations in electrochemical performance. This study accentuates the importance of understanding how synthesis affects the electrochemistry of these materials, which is critical considering the crystallographic and electrochemical complexities of the class of materials more generally. The methodology employed here is extendable to studying synthesis-property relationships of other compositionally complex Li-rich layered oxide systems.
  •  
10.
  • Menon, Ashok S., et al. (författare)
  • Synthesis-structure relationships in Li- and Mn-rich layered oxides : phase evolution, superstructure ordering and stacking faults
  • 2022
  • Ingår i: Dalton Transactions. - : Royal Society of Chemistry. - 1477-9226 .- 1477-9234. ; 51:11, s. 4435-4446
  • Tidskriftsartikel (refereegranskat)abstract
    • Li- and Mn-rich layered oxides are promising positive electrode materials for future Li-ion batteries. The presence of crystallographic features such as cation-mixing and stacking faults in these compounds make them highly susceptible to synthesis-induced structural changes. Consequently, significant variations exist in the reported structure of these compounds that complicate the understanding of how the crystallographic structure influences its properties. This work investigates the synthesis-structure relations for three widely investigated Li- and Mn-rich layered oxides: Li2MnO3, Li1.2Mn0.6Ni0.2O2 and Li1.2Mn0.54Ni0.13Co0.13O2. For each compound, the average structure is compared between two synthetic routes of differing degrees of precursor mixing and four annealing protocols. Furthermore, thermodynamic and synthesis-specific kinetic factors governing the equilibrium crystallography of each composition are considered. It was found that the structures of these compounds are thermodynamically metastable under the synthesis conditions employed. In addition to a driving force to reduce stacking faults in the structure, these compositions also exhibited a tendency to undergo structural transformations to more stable phases under more intense annealing conditions. Increasing the compositional complexity introduced a kinetic barrier to structural ordering, making Li1.2Mn0.6Ni0.2O2 and Li1.2Mn0.54Ni0.13Co0.13O2 generally more faulted relative to Li2MnO3. Additionally, domains with different degrees of faulting were found to co-exist in the compounds. This study offers insight into the highly synthesis-dependent subtle structural complexities present in these compounds and complements the substantial efforts that have been undertaken to understand and optimise its electrochemical properties.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 16
Typ av publikation
tidskriftsartikel (11)
annan publikation (3)
konferensbidrag (1)
doktorsavhandling (1)
Typ av innehåll
refereegranskat (11)
övrigt vetenskapligt/konstnärligt (5)
Författare/redaktör
Brant, William (9)
Edström, Kristina, P ... (6)
Brandell, Daniel, 19 ... (4)
Ojwang, Dickson O. (4)
Gómez, Cesar Pay, Do ... (4)
visa fler...
Lacey, Matthew (3)
Chien, Yu-Chuan, 199 ... (3)
Riekehr, Lars (2)
Salazar-Alvarez, Ger ... (2)
Svedlindh, Peter (2)
Cheung, Ocean (2)
Lewin, Erik, Dr. 197 ... (2)
Broqvist, Peter (2)
Maibach, Julia (2)
Chang, Ribooga (2)
Jansson, Ulf, 1960- (2)
Brant, William R. (2)
Osinger, Barbara (2)
Fritze, Stefan (2)
Ulusoy, Seda (2)
Chen, M (1)
Ericsson, Tore (1)
Primetzhofer, Daniel (1)
Svensson Grape, Erik ... (1)
Inge, A. Ken, 1984- (1)
Younesi, Reza (1)
Häggström, Lennart (1)
Ström, Petter (1)
Svensson, Mikael (1)
Sortica, Mauricio A. (1)
Lacey, Matthew J. (1)
Bruce, Peter G. (1)
Roberts, Matthew R. (1)
Willhammar, Tom (1)
Björklund, Erik (1)
Naylor, Andrew J. (1)
Islam, M. Saiful (1)
Mogensen, Ronnie (1)
Sobkowiak, Adam (1)
Tunes, Matheus A (1)
Greaves, Graeme (1)
Erik, Svensson Grape (1)
Andrew Ken, Inge (1)
Liu, Haidong, Dr. (1)
Chien, Yu-Chuan (1)
Pay Gómez, Cesar, Do ... (1)
Martínez, Enrique (1)
Srinath, Aishwarya (1)
Wheeler, J. M. (1)
visa färre...
Lärosäte
Uppsala universitet (16)
Stockholms universitet (2)
Språk
Engelska (16)
Forskningsämne (UKÄ/SCB)
Naturvetenskap (13)
Teknik (3)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy