SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Menon Ashok S.) ;pers:(Ojwang Dickson O.)"

Sökning: WFRF:(Menon Ashok S.) > Ojwang Dickson O.

  • Resultat 1-5 av 5
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Menon, Ashok S., et al. (författare)
  • A Crystallographic Reinvestigation of Li1.2Mn0.6Ni0.2O2
  • Annan publikation (övrigt vetenskapligt/konstnärligt)abstract
    • Despite substantial research interest, the crystallography of the promising Li-ion positive electrode material, Li1.2Mn0.6Ni0.2O2, remains disputed. The dispute is predicated on the description of the cationic arrangement in the structure, and multiple structure models have been proposed. This study attempts to provide a fresh perspective to this debate through a multi-scalar structural characterisation of Li1.2Mn0.6Ni0.2O2. Combining Bragg diffraction, transmission electron microscopy and magnetic measurements with reverse Monte Carlo analysis of total scattering data, a quantitative structural description of Li1.2Mn0.6Ni0.2O2 is developed and the existing single- and multi-phase structural descriptions of this compound have been unified. Furthermore, the merits and drawbacks of each technique is evaluated with respect to the crystallography of Li1.2Mn0.6Ni0.2O2 to explain the factors that have contributed to the lack of clarity pervading the structural description of this material. It is envisioned that a better understanding of the crystallography of Li1.2Mn0.6Ni0.2O2 contributes to harnessing the electrochemical potential of this compound.  
  •  
2.
  • Menon, Ashok S., et al. (författare)
  • Influence of Synthesis Routes on the Crystallography, Morphology, and Electrochemistry of Li2MnO3
  • 2020
  • Ingår i: ACS Applied Materials and Interfaces. - : American Chemical Society (ACS). - 1944-8244 .- 1944-8252. ; 12:5, s. 5939-5950
  • Tidskriftsartikel (refereegranskat)abstract
    • With the potential of delivering reversible capacities of up to 300 mAh/g, Li-rich transition-metal oxides hold great promise as cathode materials for future Li-ion batteries. However, a cohesive synthesis-structure-electrochemistry relationship is still lacking for these materials, which impedes progress in the field. This work investigates how and why different synthesis routes, specifically solid-state and modified Pechini sol-gel methods, affect the properties of Li2MnO3, a compositionally simple member of this material system. Through a comprehensive investigation of the synthesis mechanism along with crystallographic, morphological, and electrochemical characterization, the effects of different synthesis routes were found to predominantly influence the degree of stacking faults and particle morphology. That is, the modified Pechini method produced isotropic spherical particles with approximately 57% faulting and the solid-state samples possessed heterogeneous morphology with approximately 43% faulting probability. Inevitably, these differences lead to variations in electrochemical performance. This study accentuates the importance of understanding how synthesis affects the electrochemistry of these materials, which is critical considering the crystallographic and electrochemical complexities of the class of materials more generally. The methodology employed here is extendable to studying synthesis-property relationships of other compositionally complex Li-rich layered oxide systems.
  •  
3.
  • Menon, Ashok S., et al. (författare)
  • Synthesis-structure relationships in Li- and Mn-rich layered oxides : phase evolution, superstructure ordering and stacking faults
  • 2022
  • Ingår i: Dalton Transactions. - : Royal Society of Chemistry. - 1477-9226 .- 1477-9234. ; 51:11, s. 4435-4446
  • Tidskriftsartikel (refereegranskat)abstract
    • Li- and Mn-rich layered oxides are promising positive electrode materials for future Li-ion batteries. The presence of crystallographic features such as cation-mixing and stacking faults in these compounds make them highly susceptible to synthesis-induced structural changes. Consequently, significant variations exist in the reported structure of these compounds that complicate the understanding of how the crystallographic structure influences its properties. This work investigates the synthesis-structure relations for three widely investigated Li- and Mn-rich layered oxides: Li2MnO3, Li1.2Mn0.6Ni0.2O2 and Li1.2Mn0.54Ni0.13Co0.13O2. For each compound, the average structure is compared between two synthetic routes of differing degrees of precursor mixing and four annealing protocols. Furthermore, thermodynamic and synthesis-specific kinetic factors governing the equilibrium crystallography of each composition are considered. It was found that the structures of these compounds are thermodynamically metastable under the synthesis conditions employed. In addition to a driving force to reduce stacking faults in the structure, these compositions also exhibited a tendency to undergo structural transformations to more stable phases under more intense annealing conditions. Increasing the compositional complexity introduced a kinetic barrier to structural ordering, making Li1.2Mn0.6Ni0.2O2 and Li1.2Mn0.54Ni0.13Co0.13O2 generally more faulted relative to Li2MnO3. Additionally, domains with different degrees of faulting were found to co-exist in the compounds. This study offers insight into the highly synthesis-dependent subtle structural complexities present in these compounds and complements the substantial efforts that have been undertaken to understand and optimise its electrochemical properties.
  •  
4.
  • Menon, Ashok S., et al. (författare)
  • Synthetic Pathway Determines the Nonequilibrium Crystallography of Li- and Mn-Rich Layered Oxide Cathode Materials
  • 2021
  • Ingår i: ACS Applied Energy Materials. - : American Chemical Society (ACS). - 2574-0962. ; 4:2, s. 1924-1935
  • Tidskriftsartikel (refereegranskat)abstract
    • Li- and Mn-rich layered oxides show significant promise as electrode materials for future Li-ion batteries. However, an accurate description of its crystallography remains elusive, with both single-phase solid solution and multiphase structures being proposed for high performing materials such as Li1.2Mn0.54Ni0.13Co0.13O2. Herein, we report the synthesis of single- and multiphase variants of this material through sol-gel and solid-state methods, respectively, and demonstrate that its crystallography is a direct consequence of the synthetic route and not necessarily an inherent property of the composition, as previously argued. This was accomplished via complementary techniques that probe the bulk and local structure followed by in situ methods to map the synthetic progression. As the electrochemical performance and anionic redox behavior are often rationalized on the basis of the presumed crystal structure, clarifying the structural ambiguities is an important step toward harnessing its potential as an electrode material.
  •  
5.
  • Ojwang, Dickson O., et al. (författare)
  • Moisture-Driven Degradation Pathways in Prussian White Cathode Material for Sodium-Ion Batteries
  • 2021
  • Ingår i: ACS Applied Materials and Interfaces. - : American Chemical Society (ACS). - 1944-8244 .- 1944-8252. ; 13:8, s. 10054-10063
  • Tidskriftsartikel (refereegranskat)abstract
    • The high-theoretical-capacity (∼170 mAh/g) Prussian white (PW), NaxFe[Fe(CN)6]y·nH2O, is one of the most promising candidates for Na-ion batteries on the cusp of commercialization. However, it has limitations such as high variability of reported stable practical capacity and cycling stability. A key factor that has been identified to affect the performance of PW is water content in the structure. However, the impact of airborne moisture exposure on the electrochemical performance of PW and the chemical mechanisms leading to performance decay have not yet been explored. Herein, we for the first time systematically studied the influence of humidity on the structural and electrochemical properties of monoclinic hydrated (M-PW) and rhombohedral dehydrated (R-PW) Prussian white. It is identified that moisture-driven capacity fading proceeds via two steps, first by sodium from the bulk material reacting with moisture at the surface to form sodium hydroxide and partial oxidation of Fe2+ to Fe3+. The sodium hydroxide creates a basic environment at the surface of the PW particles, leading to decomposition to Na4[Fe(CN)6] and iron oxides. Although the first process leads to loss of capacity, which can be reversed, the second stage of degradation is irreversible. Over time, both processes lead to the formation of a passivating surface layer, which prevents both reversible and irreversible capacity losses. This study thus presents a significant step toward understanding the large performance variations presented in the literature for PW. From this study, strategies aimed at limiting moisture-driven degradation can be designed and their efficacy assessed.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-5 av 5

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy