SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Meyer Michelle N.) "

Sökning: WFRF:(Meyer Michelle N.)

  • Resultat 1-10 av 11
  • [1]2Nästa
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Karlsson Linnér, Richard, et al. (författare)
  • Genome-wide association analyses of risk tolerance and risky behaviors in over 1 million individuals identify hundreds of loci and shared genetic influences
  • 2019
  • Ingår i: Nature genetics. - 1546-1718. ; 51:2, s. 245-
  • Tidskriftsartikel (refereegranskat)abstract
    • Humans vary substantially in their willingness to take risks. In a combined sample of over 1 million individuals, we conducted genome-wide association studies (GWAS) of general risk tolerance, adventurousness, and risky behaviors in the driving, drinking, smoking, and sexual domains. Across all GWAS, we identified hundreds of associated loci, including 99 loci associated with general risk tolerance. We report evidence of substantial shared genetic influences across risk tolerance and the risky behaviors: 46 of the 99 general risk tolerance loci contain a lead SNP for at least one of our other GWAS, and general risk tolerance is genetically correlated (vertical bar(r) over cap (g)vertical bar similar to 0.25 to 0.50) with a range of risky behaviors. Bioinformatics analyses imply that genes near SNPs associated with general risk tolerance are highly expressed in brain tissues and point to a role for glutamatergic and GABAergic neurotransmission. We found no evidence of enrichment for genes previously hypothesized to relate to risk tolerance.
  •  
2.
  • Davies, Neil, et al. (författare)
  • The founding charter of the Genomic Observatories Network
  • 2014
  • Ingår i: GigaScience. - 2047-217X. ; 3:2
  • Tidskriftsartikel (refereegranskat)abstract
    • Abstract The co-authors of this paper hereby state their intention to work together to launch the Genomic Observatories Network (GOs Network) for which this document will serve as its Founding Charter. We define a Genomic Observatory as an ecosystem and/or site subject to long-term scientific research, including (but not limited to) the sustained study of genomic biodiversity from single-celled microbes to multicellular organisms.An international group of 64 scientists first published the call for a global network of Genomic Observatories in January 2012. The vision for such a network was expanded in a subsequent paper and developed over a series of meetings in Bremen (Germany), Shenzhen (China), Moorea (French Polynesia), Oxford (UK), Pacific Grove (California, USA), Washington (DC, USA), and London (UK). While this community-building process continues, here we express our mutual intent to establish the GOs Network formally, and to describe our shared vision for its future. The views expressed here are ours alone as individual scientists, and do not necessarily represent those of the institutions with which we are affiliated.
  •  
3.
  • Hibar, Derrek P., et al. (författare)
  • Novel genetic loci associated with hippocampal volume
  • 2017
  • Ingår i: Nature Communications. - 2041-1723 .- 2041-1723. ; 8
  • Tidskriftsartikel (refereegranskat)abstract
    • The hippocampal formation is a brain structure integrally involved in episodic memory, spatial navigation, cognition and stress responsiveness. Structural abnormalities in hippocampal volume and shape are found in several common neuropsychiatric disorders. To identify the genetic underpinnings of hippocampal structure here we perform a genome-wide association study (GWAS) of 33,536 individuals and discover six independent loci significantly associated with hippocampal volume, four of them novel. Of the novel loci, three lie within genes (ASTN2, DPP4 and MAST4) and one is found 200 kb upstream of SHH. A hippocampal subfield analysis shows that a locus within the MSRB3 gene shows evidence of a localized effect along the dentate gyrus, subiculum, CA1 and fissure. Further, we show that genetic variants associated with decreased hippocampal volume are also associated with increased risk for Alzheimer's disease (r(g) = -0.155). Our findings suggest novel biological pathways through which human genetic variation influences hippocampal volume and risk for neuropsychiatric illness.
4.
  • Lee, James J, et al. (författare)
  • Gene discovery and polygenic prediction from a genome-wide association study of educational attainment in 1.1 million individuals
  • 2018
  • Ingår i: Nature Genetics. - 1061-4036 .- 1546-1718. ; 50:8, s. 1112-
  • Tidskriftsartikel (refereegranskat)abstract
    • Here we conducted a large-scale genetic association analysis of educational attainment in a sample of approximately 1.1 million individuals and identify 1,271 independent genome-wide-significant SNPs. For the SNPs taken together, we found evidence of heterogeneous effects across environments. The SNPs implicate genes involved in brain-development processes and neuron-to-neuron communication. In a separate analysis of the X chromosome, we identify 10 independent genome-wide-significant SNPs and estimate a SNP heritability of around 0.3% in both men and women, consistent with partial dosage compensation. A joint (multi-phenotype) analysis of educational attainment and three related cognitive phenotypes generates polygenic scores that explain 11-13% of the variance in educational attainment and 7-10% of the variance in cognitive performance. This prediction accuracy substantially increases the utility of polygenic scores as tools in research.
  •  
5.
  • Satizabal, Claudia L., et al. (författare)
  • Genetic architecture of subcortical brain structures in 38,851 individuals
  • 2019
  • Ingår i: Nature Genetics. - 1061-4036 .- 1546-1718. ; 51:11, s. 1624-
  • Tidskriftsartikel (refereegranskat)abstract
    • Subcortical brain structures are integral to motion, consciousness, emotions and learning. We identified common genetic variation related to the volumes of the nucleus accumbens, amygdala, brainstem, caudate nucleus, globus pallidus, putamen and thalamus, using genome-wide association analyses in almost 40,000 individuals from CHARGE, ENIGMA and UK Biobank. We show that variability in subcortical volumes is heritable, and identify 48 significantly associated loci (40 novel at the time of analysis). Annotation of these loci by utilizing gene expression, methylation and neuropathological data identified 199 genes putatively implicated in neurodevelopment, synaptic signaling, axonal transport, apoptosis, inflammation/infection and susceptibility to neurological disorders. This set of genes is significantly enriched for Drosophila orthologs associated with neurodevelopmental phenotypes, suggesting evolutionarily conserved mechanisms. Our findings uncover novel biology and potential drug targets underlying brain development and disease.
  •  
6.
  • Adams, Hieab H. H., et al. (författare)
  • Novel genetic loci underlying human intracranial volume identified through genome-wide association
  • 2016
  • Ingår i: Nature Neuroscience. - 1097-6256 .- 1546-1726. ; 19:12, s. 1569-1582
  • Tidskriftsartikel (refereegranskat)abstract
    • Intracranial volume reflects the maximally attained brain size during development, and remains stable with loss of tissue in late life. It is highly heritable, but the underlying genes remain largely undetermined. In a genome-wide association study of 32,438 adults, we discovered five previously unknown loci for intracranial volume and confirmed two known signals. Four of the loci were also associated with adult human stature, but these remained associated with intracranial volume after adjusting for height. We found a high genetic correlation with child head circumference (rho(genetic) = 0.748), which indicates a similar genetic background and allowed us to identify four additional loci through meta-analysis (N-combined = 37,345). Variants for intracranial volume were also related to childhood and adult cognitive function, and Parkinson's disease, and were enriched near genes involved in growth pathways, including PI3K-AKT signaling. These findings identify the biological underpinnings of intracranial volume and their link to physiological and pathological traits.
  •  
7.
  • Hibar, Derrek P., et al. (författare)
  • Common genetic variants influence human subcortical brain structures
  • 2015
  • Ingår i: Nature. - 0028-0836. ; 520:7546, s. 224-U216
  • Tidskriftsartikel (refereegranskat)abstract
    • The highly complex structure of the human brain is strongly shaped by genetic influences(1). Subcortical brain regions form circuits with cortical areas to coordinate movement(2), learning, memory(3) and motivation(4), and altered circuits can lead to abnormal behaviour and disease(5). To investigate how common genetic variants affect the structure of these brain regions, here we conduct genome-wide association studies of the volumes of seven subcortical regions and the intracranial volume derived from magnetic resonance images of 30,717 individuals from 50 cohorts. We identify five novel genetic variants influencing the volumes of the putamen and caudate nucleus. We also find stronger evidence for three loci with previously established influences on hippocampal volume(5) and intracranial volume(6). These variants show specific volumetric effects on brain structures rather than global effects across structures. The strongest effects were found for the putamen, where a novel intergenic locus with replicable influence on volume (rs945270; P = 1.08 X 10(-33); 0.52% variance explained) showed evidence of altering the expression of the KTN1 gene in both brain and blood tissue. Variants influencing putamen volume clustered near developmental genes that regulate apoptosis, axon guidance and vesicle transport. Identification of these genetic variants provides insight into the causes of variability in human brain development, and may help to determine mechanisms of neuropsychiatric dysfunction.
  •  
8.
  • Lundgren, Markus, et al. (författare)
  • Analgesic antipyretic use among young children in the TEDDY study : No association with islet autoimmunity
  • 2017
  • Ingår i: BMC Pediatrics. - BioMed Central. - 1471-2431. ; 17:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: The use of analgesic antipyretics (ANAP) in children have long been a matter of controversy. Data on their practical use on an individual level has, however, been scarce. There are indications of possible effects on glucose homeostasis and immune function related to the use of ANAP. The aim of this study was to analyze patterns of analgesic antipyretic use across the clinical centers of The Environmental Determinants of Diabetes in the Young (TEDDY) prospective cohort study and test if ANAP use was a risk factor for islet autoimmunity. Methods: Data were collected for 8542 children in the first 2.5 years of life. Incidence was analyzed using logistic regression with country and first child status as independent variables. Holm's procedure was used to adjust for multiplicity of intercountry comparisons. Time to autoantibody seroconversion was analyzed using a Cox proportional hazards model with cumulative analgesic use as primary time dependent covariate of interest. For each categorization, a generalized estimating equation (GEE) approach was used. Results: Higher prevalence of ANAP use was found in the U.S. (95.7%) and Sweden (94.8%) compared to Finland (78.1%) and Germany (80.2%). First-born children were more commonly given acetaminophen (OR 1.26; 95% CI 1.07, 1.49; p = 0.007) but less commonly Non-Steroidal Anti-inflammatory Drugs (NSAID) (OR 0.86; 95% CI 0.78, 0.95; p = 0.002). Acetaminophen and NSAID use in the absence of fever and infection was more prevalent in the U.S. (40.4%; 26.3% of doses) compared to Sweden, Finland and Germany (p < 0.001). Acetaminophen or NSAID use before age 2.5 years did not predict development of islet autoimmunity by age 6 years (HR 1.02, 95% CI 0.99-1.09; p = 0.27). In a sub-analysis, acetaminophen use in children with fever weakly predicted development of islet autoimmunity by age 3 years (HR 1.05; 95% CI 1.01-1.09; p = 0.024). Conclusions: ANAP use in young children is not a risk factor for seroconversion by age 6 years. Use of ANAP is widespread in young children, and significantly higher in the U.S. compared to other study sites, where use is common also in absence of fever and infection.
9.
  • Okbay, Aysu, et al. (författare)
  • Genome-wide association study identifies 74 loci associated with educational attainment
  • 2016
  • Ingår i: Nature. - 0028-0836 .- 1476-4687. ; 533:7604, s. 539-542
  • Tidskriftsartikel (refereegranskat)abstract
    • Educational attainment is strongly influenced by social and other environmental factors, but genetic factors are estimated to account for at least 20% of the variation across individuals(1). Here we report the results of a genome-wide association study (GWAS) for educational attainment that extends our earlier discovery sample(1,2) of 101,069 individuals to 293,723 individuals, and a replication study in an independent sample of 111,349 individuals from the UK Biobank. We identify 74 genome-wide significant loci associated with the number of years of schooling completed. Single-nucleotide polymorphisms associated with educational attainment are disproportionately found in genomic regions regulating gene expression in the fetal brain. Candidate genes are preferentially expressed in neural tissue, especially during the prenatal period, and enriched for biological pathways involved in neural development. Our findings demonstrate that, even for a behavioural phenotype that is mostly environmentally determined, a well-powered GWAS identifies replicable associated genetic variants that suggest biologically relevant pathways. Because educational attainment is measured in large numbers of individuals, it will continue to be useful as a proxy phenotype in efforts to characterize the genetic influences of related phenotypes, including cognition and neuropsychiatric diseases.
  •  
10.
  • Rietveld, Cornelius A., et al. (författare)
  • GWAS of 126,559 Individuals Identifies Genetic Variants Associated with Educational Attainment
  • 2013
  • Ingår i: Science. - 0036-8075 .- 1095-9203. ; 340:6139, s. 1467-1471
  • Tidskriftsartikel (refereegranskat)abstract
    • A genome-wide association study (GWAS) of educational attainment was conducted in a discovery sample of 101,069 individuals and a replication sample of 25,490. Three independent single-nucleotide polymorphisms (SNPs) are genome-wide significant (rs9320913, rs11584700, rs4851266), and all three replicate. Estimated effects sizes are small (coefficient of determination R-2 approximate to 0.02%), approximately 1 month of schooling per allele. A linear polygenic score from all measured SNPs accounts for approximate to 2% of the variance in both educational attainment and cognitive function. Genes in the region of the loci have previously been associated with health, cognitive, and central nervous system phenotypes, and bioinformatics analyses suggest the involvement of the anterior caudate nucleus. These findings provide promising candidate SNPs for follow-up work, and our effect size estimates can anchor power analyses in social-science genetics.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 11
  • [1]2Nästa
Åtkomst
fritt online (2)
Typ av publikation
tidskriftsartikel (11)
Typ av innehåll
refereegranskat (11)
Författare/redaktör
Teumer, Alexander, (7)
Franke, Barbara, (6)
Hibar, Derrek P., (5)
Stein, Jason L., (5)
Jahanshad, Neda, (5)
Van der Lee, Sven J. ... (5)
visa fler...
Alhusaini, Saud, (5)
Amin, Najaf, (5)
Armstrong, Nicola J. ... (5)
Bralten, Janita, (5)
Chakravarty, M. Mall ... (5)
Ching, Christopher R ... (5)
Den Braber, Anouk, (5)
Ehrlich, Stefan, (5)
Giddaluru, Sudheer, (5)
Grimm, Oliver, (5)
Guadalupe, Tulio, (5)
Haukvik, Unn K., (5)
Hoehn, David, (5)
Holmes, Avram J., (5)
Hoogman, Martine, (5)
Kasperaviciute, Dali ... (5)
Kim, Sungeun, (5)
Kraemer, Bernd, (5)
Lee, Phil H., (5)
Liewald, David C. M. ... (5)
Luciano, Michelle, (5)
Matarin, Mar, (5)
Mather, Karen A., (5)
Mattheisen, Manuel, (5)
Milaneschi, Yuri, (5)
Nho, Kwangsik, (5)
Papmeyer, Martina, (5)
Puetz, Benno, (5)
Risacher, Shannon L. ... (5)
Roiz-Santianez, Robe ... (5)
Saemann, Philipp G., (5)
Schmaal, Lianne, (5)
Schork, Andrew J., (5)
Shen, Li, (5)
Smith, Albert V., (5)
Toro, Roberto, (5)
Westlye, Lars T., (5)
Whelan, Christopher ... (5)
Wolf, Christiane, (5)
Zwiers, Marcel P., (5)
Agartz, Ingrid, (5)
Andreassen, Ole A., (5)
Bastin, Mark E., (5)
Bennett, David A., (5)
visa färre...
Lärosäte
Karolinska Institutet (8)
Uppsala universitet (7)
Göteborgs universitet (6)
Umeå universitet (5)
Stockholms universitet (2)
Lunds universitet (1)
Språk
Engelska (11)
Forskningsämne (UKÄ/SCB)
Medicin och hälsovetenskap (10)
Naturvetenskap (5)
Samhällsvetenskap (2)

År

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy