Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Michelsen Anders) "

Sökning: WFRF:(Michelsen Anders)

  • Resultat 1-10 av 60
  • [1]23456Nästa
Sortera/gruppera träfflistan
  • Christiansen, Casper T., et al. (författare)
  • Enhanced summer warming reduces fungal decomposer diversity and litter mass loss more strongly in dry than in wet tundra
  • Ingår i: Global Change Biology. - : Wiley-Blackwell. - 1365-2486. ; 23:1, s. 406-420
  • Tidskriftsartikel (refereegranskat)abstract
    • Many Arctic regions are currently experiencing substantial summer and winter climate changes. Litter decomposition is a fundamental component of ecosystem carbon and nutrient cycles, with fungi being among the primary decomposers. To assess the impacts of seasonal climatic changes on litter fungal communities and their functioning, Betula glandulosa leaf litter was surface-incubated in two adjacent low Arctic sites with contrasting soil moisture regimes: dry shrub heath and wet sedge tundra at Disko Island, Greenland. At both sites, we investigated the impacts of factorial combinations of enhanced summer warming (using open-top chambers; OTCs) and deepened snow (using snow fences) on surface litter mass loss, chemistry and fungal decomposer communities after approximately 1 year. Enhanced summer warming significantly restricted litter mass loss by 32% in the dry and 17% in the wet site. Litter moisture content was significantly reduced by summer warming in the dry, but not in the wet site. Likewise, fungal total abundance and diversity were reduced by OTC warming at the dry site, while comparatively modest warming effects were observed in the wet site. These results suggest that increased evapotranspiration in the OTC plots lowered litter moisture content to the point where fungal decomposition activities became inhibited. In contrast, snow addition enhanced fungal abundance in both sites but did not significantly affect litter mass loss rates. Across sites, control plots only shared 15% of their fungal phylotypes, suggesting strong local controls on fungal decomposer community composition. Nevertheless, fungal community functioning (litter decomposition) was negatively affected by warming in both sites. We conclude that although buried soil organic matter decomposition is widely expected to increase with future summer warming, surface litter decay and nutrient turnover rates in both xeric and relatively moist tundra are likely to be significantly restricted by the evaporative drying associated with warmer air temperatures.
  • Cornelissen, Johannes H. C., et al. (författare)
  • Global negative vegetation feedback to climate warming responses of leaf litter decomposition rates in cold biomes
  • 2007
  • Ingår i: Ecology Letters. - : John Wiley & Sons. - 1461-023X .- 1461-0248. ; 10:7, s. 619-627
  • Tidskriftsartikel (refereegranskat)abstract
    • Whether climate change will turn cold biomes from large long-term carbon sinks into sources is hotly debated because of the great potential for ecosystem-mediated feedbacks to global climate. Critical are the direction, magnitude and generality of climate responses of plant litter decomposition. Here, we present the first quantitative analysis of the major climate-change-related drivers of litter decomposition rates in cold northern biomes worldwide.Leaf litters collected from the predominant species in 33 global change manipulation experiments in circum-arctic-alpine ecosystems were incubated simultaneously in two contrasting arctic life zones. We demonstrate that longer-term, large-scale changes to leaf litter decomposition will be driven primarily by both direct warming effects and concomitant shifts in plant growth form composition, with a much smaller role for changes in litter quality within species. Specifically, the ongoing warming-induced expansion of shrubs with recalcitrant leaf litter across cold biomes would constitute a negative feedback to global warming. Depending on the strength of other (previously reported) positive feedbacks of shrub expansion on soil carbon turnover, this may partly counteract direct warming enhancement of litter decomposition.
  • Holmstrup, Martin, et al. (författare)
  • Long-term and realistic global change manipulations had low impact on diversity of soil biota in temperate heathland
  • 2017
  • Ingår i: Scientific Reports. - 2045-2322. ; 7
  • Tidskriftsartikel (refereegranskat)abstract
    • In a dry heathland ecosystem we manipulated temperature (warming), precipitation (drought) and atmospheric concentration of CO2 in a full-factorial experiment in order to investigate changes in below-ground biodiversity as a result of future climate change. We investigated the responses in community diversity of nematodes, enchytraeids, collembolans and oribatid mites at two and eight years of manipulations. We used a structural equation modelling (SEM) approach analyzing the three manipulations, soil moisture and temperature, and seven soil biological and chemical ariables. The analysis revealed a persistent and positive effect of elevated CO2 on litter C:N ratio. After two years of treatment, the fungi to bacteria ratio was increased by warming, and the diversities within oribatid mites, collembolans and nematode groups were all affected by elevated CO2 mediated through increased litter C:N ratio. After eight years of treatment, however, the CO2-increased litter C:N ratio did not influence the diversity in any of the four fauna groups. The number of significant correlations between treatments, food source quality, and soil biota diversities was reduced from six to three after two and eight years, respectively. These results suggest a remarkable resilience within the soil biota against global climate change treatments in the long term.
  • Natali, S. M., et al. (författare)
  • Large loss of CO2 in winter observed across the northern permafrost region
  • 2019
  • Ingår i: Nature Climate Change. - : Nature Research. - 1758-678X .- 1758-6798. ; 9:11, s. 852-857
  • Tidskriftsartikel (refereegranskat)abstract
    • Recent warming in the Arctic, which has been amplified during the winter(1-3), greatly enhances microbial decomposition of soil organic matter and subsequent release of carbon dioxide (CO2)(4). However, the amount of CO2 released in winter is not known and has not been well represented by ecosystem models or empirically based estimates(5,6). Here we synthesize regional in situ observations of CO2 flux from Arctic and boreal soils to assess current and future winter carbon losses from the northern permafrost domain. We estimate a contemporary loss of 1,662 TgC per year from the permafrost region during the winter season (October-April). This loss is greater than the average growing season carbon uptake for this region estimated from process models (-1,032 TgC per year). Extending model predictions to warmer conditions up to 2100 indicates that winter CO2 emissions will increase 17% under a moderate mitigation scenario-Representative Concentration Pathway 4.5-and 41% under business-as-usual emissions scenario-Representative Concentration Pathway 8.5. Our results provide a baseline for winter CO2 emissions from northern terrestrial regions and indicate that enhanced soil CO2 loss due to winter warming may offset growing season carbon uptake under future climatic conditions.
  • Alatalo, Juha M., et al. (författare)
  • Impacts of twenty years of experimental warming on soil carbon, nitrogen, moisture and soil mites across alpine/subarctic tundra communities
  • 2017
  • Ingår i: Scientific Reports. - : Macmillan Publishers Ltd.. - 2045-2322 .- 2045-2322. ; 7
  • Tidskriftsartikel (refereegranskat)abstract
    • High-altitude and alpine areas are predicted to experience rapid and substantial increases in future temperature, which may have serious impacts on soil carbon, nutrient and soil fauna. Here we report the impact of 20 years of experimental warming on soil properties and soil mites in three contrasting plant communities in alpine/subarctic Sweden. Long-term warming decreased juvenile oribatid mite density, but had no effect on adult oribatids density, total mite density, any major mite group or the most common species. Long-term warming also caused loss of nitrogen, carbon and moisture from the mineral soil layer in mesic meadow, but not in wet meadow or heath or from the organic soil layer. There was a significant site effect on the density of one mite species, Oppiella neerlandica, and all soil parameters. A significant plot-scale impact on mites suggests that small-scale heterogeneity may be important for buffering mites from global warming. The results indicated that juvenile mites may be more vulnerable to global warming than adult stages. Importantly, the results also indicated that global warming may cause carbon and nitrogen losses in alpine and tundra mineral soils and that its effects may differ at local scale.
  • Andersen, Emil Alexander Sherman, et al. (författare)
  • Nitrogen isotopes reveal high N retention in plants and soil of old Norse and Inuit deposits along a wet-dry arctic fjord transect in Greenland
  • 2020
  • Ingår i: Plant and Soil. - : Springer. - 0032-079X .- 1573-5036. ; 455, s. 241-255
  • Tidskriftsartikel (refereegranskat)abstract
    • Aims: Plant growth in the Arctic is often nutrient limited due to temperature constraints on decomposition and low atmospheric input of nitrogen (N). Local hotspots of nutrient enrichment found in up to 4000-year-old archaeological deposits can be used to explore the recycling and long-term retention of nutrients in arctic ecosystems.Methods: We investigated old Inuit and Norse deposits (known as middens) and adjacent tundra ecosystems along a wet-dry fjord gradient in western Greenland to explore the isotopic fingerprinting of plant and soil carbon and nitrogen (C-13/C-12 and(15)N/N-14) derived from human presence.Results: At all locations we observed a significant isotopic fingerprint in soil and plant N related to human deposits. This demonstrates a century-long legacy of past human habitation on plant and soil characteristics and indicates a surprisingly high N retention in these ecosystems. This is consistent with the significantly higher plant biomass in areas with archaeological deposits.Conclusion: Vegetation composition and N in plants and soils displayed marked differences along the wet-dry fjord gradient. Furthermore, the profound nutrient enrichment and organic matter accumulation in archaeological deposits compared to surrounding tundra demonstrates a century-long legacy of past habitation on plant and soil characteristics as well as efficient N cycling with surprisingly limited N loss.
  • Andresen, Louise C., et al. (författare)
  • Seasonal changes in nitrogen availability, and root and microbial uptake of (15)N(13)C(9)-phenylalanine and (15)N-ammonium in situ at a temperate heath
  • 2011
  • Ingår i: Applied Soil Ecology. - : Elsevier. - 0929-1393. ; 51, s. 94-101
  • Tidskriftsartikel (refereegranskat)abstract
    • In the plant biosynthesis of secondary compounds, phenylalanine is a precursor of condensed tannins. Tannins are deposited into the soil in plant root exudates and dead plant material and have been suggested to precipitate some soil nutrients and hence reduce nutrient availability for plants. Free amino acid, inorganic and microbial N concentration during the growing season was investigated in an ecosystem with a natural tannin chemosphere. The influence of tannins on the uptake of nitrogen in plants and microbes was followed by injecting tannic acid (TA), ammonium-(15)N and phenylalanine-(15)N/(13)C(9). Plants preferred ammonium over phenylalanine, while microbes had no preference. Soil microbes had a 77% uptake of intact phenylalanine. Phenylalanine was acquired intact by both grasses and Calluna, with 63% and 38% uptake of intact phenylalanine in grass fine roots and Calluna roots, respectively. Inorganic N and amino acid concentrations were lowest in the period with highest plant activity and grass root biomass but were unaffected by TA addition. (C) 2011 Elsevier B.V. All rights reserved.
  • Andresen, Louise C., et al. (författare)
  • Uptake of pulse injected nitrogen by soil microbes and mycorrhizal and non-mycorrhizal plants in a species-diverse subarctic heath ecosystem
  • 2008
  • Ingår i: Plant and Soil. - : Springer. - 0032-079X. ; 313:1-2, s. 283-295
  • Tidskriftsartikel (refereegranskat)abstract
    • N-15 labeled ammonium, glycine or glutamic acid was injected into subarctic heath soil in situ, with the purpose of investigating how the nitrogen added in these pulses was subsequently utilized and cycled in the ecosystem. We analyzed the acquisition of N-15 label in mycorrhizal and non-mycorrhizal plants and in soil microorganisms, in order to reveal probable differences in acquisition patterns between the two functional plant types and between plants and soil microorganisms. Three weeks after the label addition, with the N-15-forms added with same amount of nitrogen per square meter, we analyzed the N-15-enrichment in total soil, in soil K2SO4 (0.5 M) extracts and in the microbial biomass after vacuum-incubation of soil in chloroform and subsequent K2SO4 extraction. Furthermore the N-15-enrichment was analyzed in current years leaves of the dominant plant species sampled three, five and 21 days after label addition. The soil microorganisms had very high N-15 recovery from all the N sources compared to plants. Microorganisms incorporated most N-15 from the glutamic acid source, intermediate amounts of N-15 from the glycine source and least N-15 from the NH4+ source. In contrast to microorganisms, all ten investigated plant species generally acquired more N-15 label from the NH4+ source than from the amino acid sources. Non-mycorrhizal plant species showed higher concentration of N-15 label than mycorrhizal plant species 3 days after labeling, while 21 days after labeling their acquisition of N-15 label from amino acid injection was lower than, and the acquisition of N-15 label from NH4 injection was similar to that of the mycorrhizal species. We conclude that the soil microorganisms were more efficient than plants in acquiring pulses of nutrients which, under natural conditions, occur after e. g. freeze-thaw and dry rewet events, although of smaller size. It also appears that the mycorrhizal plants in the short term may be less efficient than non-mycorrhizal plants in nitrogen acquisition, but in a longer term show larger nitrogen acquisition than non-mycorrhizal plants. However, the differences in N-15 uptake patterns may also be due to differences in leaf longevity and woodiness between plant functional groups.
  • Barthelemy, Hélène, et al. (författare)
  • Effect of herbivory on the fate of added 15N-urea in a grazed Arctic tundra
  • Annan publikation (övrigt vetenskapligt)abstract
    • Mammalian herbivores can strongly influence nitrogen cycling and herbivore urine could be an important component of the nutrient cycle in grazed ecosystems. Despite its potential role for ecosystem productivity and soil processes, the distribution of N from urine in the different ecosystem compartments is poorly understood. This study investigates the fate of 15N enriched urea applied above the plant canopy in two tundra sites either heavily or lightly grazed by reindeer for the last 50 years. We explored the fate of the 15N in the different ecosystem N pools at 2 weeks and 1 years following tracer addition. We hypothesized that cryptogams would take up most N under light grazing, but graminoids most N under heavy grazing. The 15N-urea was rapidly incorporated in cryptogams and aboveground parts of vascular plants, while the soil microbial pool and plant roots sequestered only a marginal proportion of the labelled N applied. Hence, urine addition supports a higher primary production in tundra since most of the nutrients released from urine could be assimilated by the aboveground components with little N reaching the belowground compartments. Mosses and lichens still constituted the largest sink of the 15N-urea 1 year after tracer addition at both levels of grazing intensity demonstrating their large ability to capture and retain N  from urine. Deciduous and evergreen shrubs were just as efficient as graminoids in taking up the 15N-urea. The total recovery of the labelled urea was lower in the heavily grazed sites, suggesting that reindeer reduce the N retention in the system. Rapid incorporation of the applied 15N-urea indicates that arctic plants can take advantage of a pulse of incoming N in the form of urea, which supports a higher primary production. However, whether urine also maintains a high production of forage plants depend on plant community composition, since most urea was recovered in non-forage plants for reindeer.
  • Barthelemy, Hélène, et al. (författare)
  • Urine is an important nitrogen source for plants irrespective of vegetation composition in an Arctic tundra : Insights from a N-15-enriched urea tracer experiment
  • 2018
  • Ingår i: Journal of Ecology. - : Wiley-Blackwell Publishing Inc.. - 0022-0477 .- 1365-2745. ; 106:1, s. 367-378
  • Tidskriftsartikel (refereegranskat)abstract
    • 1. Mammalian herbivores can strongly influence nitrogen (N) cycling and herbivore urine could be a central component of the N cycle in grazed ecosystems. Despite its potential role for ecosystem productivity and functioning, the fate of N derived from urine has rarely been investigated in grazed ecosystems. 2. This study explored the fate of N-15-enriched urea in tundra sites that have been either lightly or intensively grazed by reindeer for more than 50years. We followed the fate of the N-15 applied to the plant canopy, at 2weeks and 1year after tracer addition, in the different ecosystem N pools. 3. N-15-urea was rapidly incorporated in cryptogams and in above-ground parts of vascular plants, while the soil microbial pool and plant roots sequestered only a marginal proportion. Furthermore, the litter layer constituted a large sink for the N-15-urea, at least in the short term, indicating a high biological activity in the litter layer and high immobilization in the first phases of organic matter decomposition. 4. Mosses and lichens still constituted the largest sink for the N-15-urea 1year after tracer addition at both levels of grazing intensity demonstrating their large ability to capture and retain N from urine. Despite large fundamental differences in their traits, deciduous and evergreen shrubs were just as efficient as graminoids in taking up the N-15-urea. The total recovery of N-15-urea was lower in the intensively grazed sites, suggesting that reindeer reduce ecosystem N retention. 5. Synthesis. The rapid incorporation of the applied N-15-urea indicates that arctic plants can take advantage of a pulse of incoming N from urine. In addition, N-15 values of all taxa in the heavily grazed sites converged towards the N-15 values for urine, bringing further evidence that urine is an important N source for plants in grazed tundra ecosystems.
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 60
  • [1]23456Nästa
Typ av publikation
tidskriftsartikel (52)
bokkapitel (5)
annan publikation (2)
forskningsöversikt (1)
Typ av innehåll
refereegranskat (56)
övrigt vetenskapligt (4)
Michelsen, Anders (48)
Elberling, Bo (11)
Cooper, Elisabeth J. (10)
Blok, Daan (9)
Henry, Gregory H.R. (9)
Hik, David S. (8)
visa fler...
Hofgaard, Annika (8)
Oberbauer, Steven F. (7)
Myers-Smith, Isla H. (7)
Hollister, Robert D. (7)
Rixen, Christian (7)
Molau, Ulf (6)
Ueland, Thor (6)
Himmelmann, Anders (6)
Michelsen, Annika E. (6)
Kontny, Frederic (6)
Jonasson, Sven (6)
Olofsson, Johan (6)
Lévesque, Esther (6)
Gould, William A. (6)
Dorrepaal, Ellen (5)
Welker, Jeffrey M. (5)
Wallentin, Lars, 194 ... (5)
Bertilsson, Maria (5)
Becker, Richard C. (5)
Siegbahn, Agneta, 19 ... (5)
Storey, Robert F. (5)
Åkerblom, Axel, 1977 ... (5)
Klanderud, Kari (5)
Heijmans, Monique M. ... (5)
Elmendorf, Sarah C. (5)
Hermanutz, Luise (5)
Onipchenko, Vladimir ... (5)
Aukrust, Pål (4)
Christensen, Torben ... (4)
Grogan, Paul (4)
Schmidt, Niels Marti ... (4)
Ström, Lena (4)
Soudzilovskaia, Nade ... (4)
Tremblay, Jean-Pierr ... (4)
Wookey, Philip A. (4)
Bjorkman, Anne D. (4)
Prevéy, Janet S. (4)
Thomas, Haydn J.D. (4)
Wipf, Sonja (4)
Spasojevic, Marko J. (4)
Boulanger-Lapointe, ... (4)
Magnusson, Borgthor (4)
van Bodegom, Peter M ... (4)
Bjork, Robert G. (4)
visa färre...
Lunds universitet (34)
Umeå universitet (12)
Göteborgs universitet (9)
Uppsala universitet (8)
Stockholms universitet (3)
Sveriges Lantbruksuniversitet (3)
visa fler...
Jönköping University (2)
Luleå tekniska universitet (1)
visa färre...
Engelska (60)
Forskningsämne (UKÄ/SCB)
Naturvetenskap (45)
Medicin och hälsovetenskap (7)
Lantbruksvetenskap (4)
Humaniora (4)


pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy