SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Michelsen Anders) ;lar1:(gu)"

Sökning: WFRF:(Michelsen Anders) > Göteborgs universitet

  • Resultat 1-10 av 12
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Holmstrup, Martin, et al. (författare)
  • Long-term and realistic global change manipulations had low impact on diversity of soil biota in temperate heathland
  • 2017
  • Ingår i: Scientific Reports. - : Springer Science and Business Media LLC. - 2045-2322. ; 7
  • Tidskriftsartikel (refereegranskat)abstract
    • In a dry heathland ecosystem we manipulated temperature (warming), precipitation (drought) and atmospheric concentration of CO2 in a full-factorial experiment in order to investigate changes in below-ground biodiversity as a result of future climate change. We investigated the responses in community diversity of nematodes, enchytraeids, collembolans and oribatid mites at two and eight years of manipulations. We used a structural equation modelling (SEM) approach analyzing the three manipulations, soil moisture and temperature, and seven soil biological and chemical ariables. The analysis revealed a persistent and positive effect of elevated CO2 on litter C:N ratio. After two years of treatment, the fungi to bacteria ratio was increased by warming, and the diversities within oribatid mites, collembolans and nematode groups were all affected by elevated CO2 mediated through increased litter C:N ratio. After eight years of treatment, however, the CO2-increased litter C:N ratio did not influence the diversity in any of the four fauna groups. The number of significant correlations between treatments, food source quality, and soil biota diversities was reduced from six to three after two and eight years, respectively. These results suggest a remarkable resilience within the soil biota against global climate change treatments in the long term.
  •  
2.
  • Sarneel, Judith M., et al. (författare)
  • Reading tea leaves worldwide: Decoupled drivers of initial litter decomposition mass-loss rate and stabilization
  • 2024
  • Ingår i: ECOLOGY LETTERS. - : John Wiley & Sons. - 1461-023X .- 1461-0248. ; 27:5
  • Tidskriftsartikel (refereegranskat)abstract
    • The breakdown of plant material fuels soil functioning and biodiversity. Currently, process understanding of global decomposition patterns and the drivers of such patterns are hampered by the lack of coherent large-scale datasets. We buried 36,000 individual litterbags (tea bags) worldwide and found an overall negative correlation between initial mass-loss rates and stabilization factors of plant-derived carbon, using the Tea Bag Index (TBI). The stabilization factor quantifies the degree to which easy-to-degrade components accumulate during early-stage decomposition (e.g. by environmental limitations). However, agriculture and an interaction between moisture and temperature led to a decoupling between initial mass-loss rates and stabilization, notably in colder locations. Using TBI improved mass-loss estimates of natural litter compared to models that ignored stabilization. Ignoring the transformation of dead plant material to more recalcitrant substances during early-stage decomposition, and the environmental control of this transformation, could overestimate carbon losses during early decomposition in carbon cycle models.
  •  
3.
  • Andresen, Louise C., 1974, et al. (författare)
  • Moderate nitrogen retention in temperate heath ecosystem after elevated CO2, drought and warming through 7years
  • 2023
  • Ingår i: European Journal of Soil Science. - 1351-0754 .- 1365-2389. ; 74:4
  • Tidskriftsartikel (refereegranskat)abstract
    • Nitrogen (N) dynamic is one of the main controlling factors of responses to climate change in N-limited terrestrial ecosystems, which rely on nutrient re-cycling and retention. In this study we investigate the N partitioning in ecosystem compartments of a grassland heath, and the impact of multiple climate change factors on long-term N retention after 15N pulse labelling. The impacts of elevated carbon dioxide (eCO2), warming and drought and the treatments in combination on ecosystem N retention was investigated in a field scale manipulation experiment. A six-year time-course was assessed by pulse-labelling with the stable N isotope 15N and by sampling after 1 day, 1 year and 6years. After the six years we observed that the total ecosystem retained 42 % of the amended 15N across treatments (recovery of the amended 15N in the pool). The fate of the applied 15N was mainly stabilisation in soil, with 36 % recovery, while the plant compartment and microbial biomass each retained only 1-2 % of the added 15N. This suggests a moderate retention of N, for all treatments, as compared to similar long-term studies of forest ecosystems. A decreased ammonium and vegetation N pool combined with higher 15N retention in the soil at eCO2 treatments suggests that eCO2 promoted processes that immobilize N in soil, while warming counteracted this when combined with eCO2. Drought treatments contrastingly increased the vegetation N pool. We conclude that as the organic soil layer has the main capacity for N storage in a temperate heathland-grassland, it is important for buffering nutrient availability and maintaining a resilient ecosystem. However, the full treatment combination of drought, warming and eCO2 did not differ in 15N recovery from the controls, suggesting unchanged long-term consequences of climate change on retention of pulse added N in this ecosystem.
  •  
4.
  • Andresen, Louise C., 1974, et al. (författare)
  • Patterns of free amino acids in tundra soils reflect mycorrhizal type, shrubification, and warming
  • 2022
  • Ingår i: Mycorrhiza. - : Springer Science and Business Media LLC. - 0940-6360 .- 1432-1890. ; 32:3-4, s. 305-313
  • Tidskriftsartikel (refereegranskat)abstract
    • The soil nitrogen (N) cycle in cold terrestrial ecosystems is slow and organically bound N is an important source of N for plants in these ecosystems. Many plant species can take up free amino acids from these infertile soils, either directly or indirectly via their mycorrhizal fungi. We hypothesized that plant community changes and local plant community differences will alter the soil free amino acid pool and composition; and that long-term warming could enhance this effect. To test this, we studied the composition of extractable free amino acids at five separate heath, meadow, and bog locations in subarctic and alpine Scandinavia, with long-term (13 to 24 years) warming manipulations. The plant communities all included a mixture of ecto-, ericoid-, and arbuscular mycorrhizal plant species. Vegetation dominated by grasses and forbs with arbuscular and non-mycorrhizal associations showed highest soil free amino acid content, distinguishing them from the sites dominated by shrubs with ecto- and ericoid-mycorrhizal associations. Warming increased shrub and decreased moss cover at two sites, and by using redundancy analysis, we found that altered soil free amino acid composition was related to this plant cover change. From this, we conclude that the mycorrhizal type is important in controlling soil N cycling and that expansion of shrubs with ectomycorrhiza (and to some extent ericoid mycorrhiza) can help retain N within the ecosystems by tightening the N cycle.
  •  
5.
  • Björkman, Anne, 1981, et al. (författare)
  • Plant functional trait change across a warming tundra biome
  • 2018
  • Ingår i: Nature. - : Springer Science and Business Media LLC. - 0028-0836 .- 1476-4687. ; 562:7725, s. 57-62
  • Tidskriftsartikel (refereegranskat)abstract
    • The tundra is warming more rapidly than any other biome on Earth, and the potential ramifications are far-reaching because of global feedback effects between vegetation and climate. A better understanding of how environmental factors shape plant structure and function is crucial for predicting the consequences of environmental change for ecosystem functioning. Here we explore the biome-wide relationships between temperature, moisture and seven key plant functional traits both across space and over three decades of warming at 117 tundra locations. Spatial temperature–trait relationships were generally strong but soil moisture had a marked influence on the strength and direction of these relationships, highlighting the potentially important influence of changes in water availability on future trait shifts in tundra plant communities. Community height increased with warming across all sites over the past three decades, but other traits lagged far behind predicted rates of change. Our findings highlight the challenge of using space-for-time substitution to predict the functional consequences of future warming and suggest that functions that are tied closely to plant height will experience the most rapid change. They also reveal the strength with which environmental factors shape biotic communities at the coldest extremes of the planet and will help to improve projections of functional changes in tundra ecosystems with climate warming.
  •  
6.
  • Björkman, Anne, 1981, et al. (författare)
  • Tundra Trait Team: A database of plant traits spanning the tundra biome
  • 2018
  • Ingår i: Global Ecology and Biogeography. - : Wiley. - 1466-822X .- 1466-8238. ; 27:12, s. 1402-1411
  • Tidskriftsartikel (refereegranskat)abstract
    • © 2018 The Authors Global Ecology and Biogeography Published by John Wiley & Sons Ltd Motivation: The Tundra Trait Team (TTT) database includes field-based measurements of key traits related to plant form and function at multiple sites across the tundra biome. This dataset can be used to address theoretical questions about plant strategy and trade-offs, trait–environment relationships and environmental filtering, and trait variation across spatial scales, to validate satellite data, and to inform Earth system model parameters. Main types of variable contained: The database contains 91,970 measurements of 18 plant traits. The most frequently measured traits (>1,000 observations each) include plant height, leaf area, specific leaf area, leaf fresh and dry mass, leaf dry matter content, leaf nitrogen, carbon and phosphorus content, leaf C:N and N:P, seed mass, and stem specific density. Spatial location and grain: Measurements were collected in tundra habitats in both the Northern and Southern Hemispheres, including Arctic sites in Alaska, Canada, Greenland, Fennoscandia and Siberia, alpine sites in the European Alps, Colorado Rockies, Caucasus, Ural Mountains, Pyrenees, Australian Alps, and Central Otago Mountains (New Zealand), and sub-Antarctic Marion Island. More than 99% of observations are georeferenced. Time period and grain: All data were collected between 1964 and 2018. A small number of sites have repeated trait measurements at two or more time periods. Major taxa and level of measurement: Trait measurements were made on 978 terrestrial vascular plant species growing in tundra habitats. Most observations are on individuals (86%), while the remainder represent plot or site means or maximums per species. Software format: csv file and GitHub repository with data cleaning scripts in R; contribution to TRY plant trait database (www.try-db.org) to be included in the next version release.
  •  
7.
  • Callaghan, Terry V., et al. (författare)
  • Ecosystem change and stability over multiple decades in the Swedish subarctic : complex processes and multiple drivers
  • 2013
  • Ingår i: Philosophical Transactions of the Royal Society of London. Biological Sciences. - : The Royal Society. - 0962-8436 .- 1471-2970. ; 368:1624
  • Tidskriftsartikel (refereegranskat)abstract
    • The subarctic environment of northernmost Sweden has changed over the past century, particularly elements of climate and cryosphere. This paper presents a unique geo-referenced record of environmental and ecosystem observations from the area since 1913. Abiotic changes have been substantial. Vegetation changes include not only increases in growth and range extension but also counterintuitive decreases, and stability: all three possible responses. Changes in species composition within the major plant communities have ranged between almost no changes to almost a 50 per cent increase in the number of species. Changes in plant species abundance also vary with particularly large increases in trees and shrubs (up to 600%). There has been an increase in abundance of aspen and large changes in other plant communities responding to wetland area increases resulting from permafrost thaw. Populations of herbivores have responded to varying management practices and climate regimes, particularly changing snow conditions. While it is difficult to generalize and scale-up the site-specific changes in ecosystems, this very site-specificity, combined with projections of change, is of immediate relevance to local stakeholders who need to adapt to new opportunities and to respond to challenges. Furthermore, the relatively small area and its unique datasets are a microcosm of the complexity of Arctic landscapes in transition that remains to be documented.
  •  
8.
  • Cornelissen, Johannes H C, et al. (författare)
  • Global negative vegetation feedback to climate warming responses of leaf litter decomposition rates in cold biomes
  • 2007
  • Ingår i: Ecology Letters. - : Wiley. - 1461-023X .- 1461-0248. ; 10:7, s. 619-627
  • Tidskriftsartikel (refereegranskat)abstract
    • Whether climate change will turn cold biomes from large long-term carbon sinks into sources is hotly debated because of the great potential for ecosystem-mediated feedbacks to global climate. Critical are the direction, magnitude and generality of climate responses of plant litter decomposition. Here, we present the first quantitative analysis of the major climate-change-related drivers of litter decomposition rates in cold northern biomes worldwide.Leaf litters collected from the predominant species in 33 global change manipulation experiments in circum-arctic-alpine ecosystems were incubated simultaneously in two contrasting arctic life zones. We demonstrate that longer-term, large-scale changes to leaf litter decomposition will be driven primarily by both direct warming effects and concomitant shifts in plant growth form composition, with a much smaller role for changes in litter quality within species. Specifically, the ongoing warming-induced expansion of shrubs with recalcitrant leaf litter across cold biomes would constitute a negative feedback to global warming. Depending on the strength of other (previously reported) positive feedbacks of shrub expansion on soil carbon turnover, this may partly counteract direct warming enhancement of litter decomposition.
  •  
9.
  • Dornelas, M., et al. (författare)
  • BioTIME: A database of biodiversity time series for the Anthropocene
  • 2018
  • Ingår i: Global Ecology and Biogeography. - : Wiley. - 1466-822X .- 1466-8238. ; 27:7, s. 760-786
  • Tidskriftsartikel (refereegranskat)abstract
    • Motivation: The BioTIME database contains raw data on species identities and abundances in ecological assemblages through time. These data enable users to calculate temporal trends in biodiversity within and amongst assemblages using a broad range of metrics. BioTIME is being developed as a community-led open-source database of biodiversity time series. Our goal is to accelerate and facilitate quantitative analysis of temporal patterns of biodiversity in the Anthropocene. Main types of variables included: The database contains 8,777,413 species abundance records, from assemblages consistently sampled for a minimum of 2 years, which need not necessarily be consecutive. In addition, the database contains metadata relating to sampling methodology and contextual information about each record. Spatial location and grain: BioTIME is a global database of 547,161 unique sampling locations spanning the marine, freshwater and terrestrial realms. Grain size varies across datasets from 0.0000000158 km(2) (158 cm(2)) to 100 km(2) (1,000,000,000,000 cm(2)). Time period and grainBio: TIME records span from 1874 to 2016. The minimal temporal grain across all datasets in BioTIME is a year. Major taxa and level of measurement: BioTIME includes data from 44,440 species across the plant and animal kingdoms, ranging from plants, plankton and terrestrial invertebrates to small and large vertebrates.
  •  
10.
  • Elmendorf, Sarah C., et al. (författare)
  • Global assessment of experimental climate warming on tundra vegetation : heterogeneity over space and time
  • 2012
  • Ingår i: Ecology Letters. - : Wiley. - 1461-023X .- 1461-0248. ; 15:2, s. 164-175
  • Forskningsöversikt (refereegranskat)abstract
    • Understanding the sensitivity of tundra vegetation to climate warming is critical to forecasting future biodiversity and vegetation feedbacks to climate. In situ warming experiments accelerate climate change on a small scale to forecast responses of local plant communities. Limitations of this approach include the apparent site-specificity of results and uncertainty about the power of short-term studies to anticipate longer term change. We address these issues with a synthesis of 61 experimental warming studies, of up to 20 years duration, in tundra sites worldwide. The response of plant groups to warming often differed with ambient summer temperature, soil moisture and experimental duration. Shrubs increased with warming only where ambient temperature was high, whereas graminoids increased primarily in the coldest study sites. Linear increases in effect size over time were frequently observed. There was little indication of saturating or accelerating effects, as would be predicted if negative or positive vegetation feedbacks were common. These results indicate that tundra vegetation exhibits strong regional variation in response to warming, and that in vulnerable regions, cumulative effects of long-term warming on tundra vegetation and associated ecosystem consequences have the potential to be much greater than we have observed to date.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 12
Typ av publikation
tidskriftsartikel (11)
forskningsöversikt (1)
Typ av innehåll
refereegranskat (12)
Författare/redaktör
Michelsen, Anders (11)
Molau, Ulf, 1951 (6)
Björk, Robert G., 19 ... (5)
Myers-Smith, Isla H. (5)
Oberbauer, Steven F. (4)
Andresen, Louise C., ... (4)
visa fler...
Hik, David S. (4)
Hofgaard, Annika (4)
Elmendorf, Sarah C. (4)
Henry, Gregory H.R. (4)
Hollister, Robert D. (4)
Rixen, Christian (4)
Beier, Claus (3)
Alatalo, Juha M. (3)
Björkman, Anne, 1981 (3)
Klanderud, Kari (3)
Olofsson, Johan (3)
Soudzilovskaia, Nade ... (3)
Lévesque, Esther (3)
Thomas, Haydn J.D. (3)
Cornelissen, J. Hans ... (2)
Forbes, Bruce C. (2)
Grogan, Paul (2)
Johnstone, Jill F. (2)
Laudon, Hjalmar (2)
Schmidt, Inger K. (2)
Welker, Jeffrey M. (2)
Little, Chelsea J. (2)
Totland, O (2)
Grau, Oriol (2)
van Bodegom, Peter M ... (2)
Elberling, Bo (2)
Aerts, Rien (2)
Ambus, Per (2)
Reich, Peter B (2)
Nabe-Nielsen, Jacob (2)
Te Beest, Mariska (2)
Buchwal, Agata (2)
Hallinger, Martin (2)
Heijmans, Monique M. ... (2)
Jónsdóttir, Ingibjor ... (2)
Normand, Signe (2)
Street, Lorna E. (2)
Wilmking, Martin (2)
Wookey, Philip A. (2)
Milbau, Ann (2)
Iversen, Colleen M. (2)
Ninot, Josep M. (2)
Blok, Daan (2)
Prevéy, Janet S. (2)
visa färre...
Lärosäte
Umeå universitet (5)
Sveriges Lantbruksuniversitet (4)
Lunds universitet (3)
Uppsala universitet (2)
Stockholms universitet (2)
visa fler...
Högskolan i Gävle (1)
Mälardalens universitet (1)
Jönköping University (1)
VTI - Statens väg- och transportforskningsinstitut (1)
visa färre...
Språk
Engelska (12)
Forskningsämne (UKÄ/SCB)
Naturvetenskap (12)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy