SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Michelsen Anders) ;lar1:(umu)"

Search: WFRF:(Michelsen Anders) > Umeå University

  • Result 1-10 of 18
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Sarneel, Judith M., et al. (author)
  • Reading tea leaves worldwide: Decoupled drivers of initial litter decomposition mass-loss rate and stabilization
  • 2024
  • In: ECOLOGY LETTERS. - : John Wiley & Sons. - 1461-023X .- 1461-0248. ; 27:5
  • Journal article (peer-reviewed)abstract
    • The breakdown of plant material fuels soil functioning and biodiversity. Currently, process understanding of global decomposition patterns and the drivers of such patterns are hampered by the lack of coherent large-scale datasets. We buried 36,000 individual litterbags (tea bags) worldwide and found an overall negative correlation between initial mass-loss rates and stabilization factors of plant-derived carbon, using the Tea Bag Index (TBI). The stabilization factor quantifies the degree to which easy-to-degrade components accumulate during early-stage decomposition (e.g. by environmental limitations). However, agriculture and an interaction between moisture and temperature led to a decoupling between initial mass-loss rates and stabilization, notably in colder locations. Using TBI improved mass-loss estimates of natural litter compared to models that ignored stabilization. Ignoring the transformation of dead plant material to more recalcitrant substances during early-stage decomposition, and the environmental control of this transformation, could overestimate carbon losses during early decomposition in carbon cycle models.
  •  
2.
  • Andersen, Emil Alexander Sherman, et al. (author)
  • Nitrogen isotopes reveal high N retention in plants and soil of old Norse and Inuit deposits along a wet-dry arctic fjord transect in Greenland
  • 2020
  • In: Plant and Soil. - : Springer. - 0032-079X .- 1573-5036. ; 455:1-2, s. 241-255
  • Journal article (peer-reviewed)abstract
    • Aims: Plant growth in the Arctic is often nutrient limited due to temperature constraints on decomposition and low atmospheric input of nitrogen (N). Local hotspots of nutrient enrichment found in up to 4000-year-old archaeological deposits can be used to explore the recycling and long-term retention of nutrients in arctic ecosystems.Methods: We investigated old Inuit and Norse deposits (known as middens) and adjacent tundra ecosystems along a wet-dry fjord gradient in western Greenland to explore the isotopic fingerprinting of plant and soil carbon and nitrogen (C-13/C-12 and(15)N/N-14) derived from human presence.Results: At all locations we observed a significant isotopic fingerprint in soil and plant N related to human deposits. This demonstrates a century-long legacy of past human habitation on plant and soil characteristics and indicates a surprisingly high N retention in these ecosystems. This is consistent with the significantly higher plant biomass in areas with archaeological deposits.Conclusion: Vegetation composition and N in plants and soils displayed marked differences along the wet-dry fjord gradient. Furthermore, the profound nutrient enrichment and organic matter accumulation in archaeological deposits compared to surrounding tundra demonstrates a century-long legacy of past habitation on plant and soil characteristics as well as efficient N cycling with surprisingly limited N loss.
  •  
3.
  • Barthelemy, Hélène, et al. (author)
  • Effect of herbivory on the fate of added 15N-urea in a grazed Arctic tundra
  • Other publication (other academic/artistic)abstract
    • Mammalian herbivores can strongly influence nitrogen cycling and herbivore urine could be an important component of the nutrient cycle in grazed ecosystems. Despite its potential role for ecosystem productivity and soil processes, the distribution of N from urine in the different ecosystem compartments is poorly understood. This study investigates the fate of 15N enriched urea applied above the plant canopy in two tundra sites either heavily or lightly grazed by reindeer for the last 50 years. We explored the fate of the 15N in the different ecosystem N pools at 2 weeks and 1 years following tracer addition. We hypothesized that cryptogams would take up most N under light grazing, but graminoids most N under heavy grazing. The 15N-urea was rapidly incorporated in cryptogams and aboveground parts of vascular plants, while the soil microbial pool and plant roots sequestered only a marginal proportion of the labelled N applied. Hence, urine addition supports a higher primary production in tundra since most of the nutrients released from urine could be assimilated by the aboveground components with little N reaching the belowground compartments. Mosses and lichens still constituted the largest sink of the 15N-urea 1 year after tracer addition at both levels of grazing intensity demonstrating their large ability to capture and retain N  from urine. Deciduous and evergreen shrubs were just as efficient as graminoids in taking up the 15N-urea. The total recovery of the labelled urea was lower in the heavily grazed sites, suggesting that reindeer reduce the N retention in the system. Rapid incorporation of the applied 15N-urea indicates that arctic plants can take advantage of a pulse of incoming N in the form of urea, which supports a higher primary production. However, whether urine also maintains a high production of forage plants depend on plant community composition, since most urea was recovered in non-forage plants for reindeer.
  •  
4.
  • Barthelemy, Hélène, et al. (author)
  • Short- and long-term plant and microbial uptake of 15N-labelled urea in a mesic tundra heath, West Greenland
  • 2024
  • In: Polar Biology. - : Springer Nature. - 0722-4060 .- 1432-2056. ; 47:1, s. 1-15
  • Journal article (peer-reviewed)abstract
    • Terrestrial animals are key elements in the cycling of elements in the Arctic where nutrient availability is low. Waste production by herbivores, in particular urine deposition, has a crucial role for nitrogen (N) recycling, still, it remains largely unexplored. Also, experimental evidence is biased toward short-term studies and Arctic regions under high herbivore pressure. In this study, we aimed to examine the fate of N derived from urine in a nutrient poor tundra heath in West Greenland, with historical low level of herbivory. We performed a pulse labelling with 15N-urea over the plant canopy and explored ecosystem N partition and retention in the short-term (2 weeks and 1 year) and longer-term (5 years). We found that all vascular plants, irrespective of their traits, could rapidly take up N-urea, but mosses and lichens were even more efficient. Total 15N enrichment was severely reduced for all plants 5 years after tracer addition, with the exception of cryptogams, indicating that non-vascular plants constituted a long-term sink of 15N-urea. The 15N recovery was also high in the litter suggesting high N immobilization in this layer, potentially delaying the nutrients from urine entering the soil compartment. Long-term 15N recovery in soil microbial biomass was minimal, but as much as 30% of added 15N remained in the non-microbial fraction after 5 years. Our results demonstrate that tundra plants that have evolved under low herbivory pressure are well adapted to quickly take advantage of labile urea, with urine having only a transient effect on soil nutrient availability.
  •  
5.
  • Barthelemy, Hélène, et al. (author)
  • Urine is an important nitrogen source for plants irrespective of vegetation composition in an Arctic tundra : Insights from a N-15-enriched urea tracer experiment
  • 2018
  • In: Journal of Ecology. - : Wiley-Blackwell Publishing Inc.. - 0022-0477 .- 1365-2745. ; 106:1, s. 367-378
  • Journal article (peer-reviewed)abstract
    • 1. Mammalian herbivores can strongly influence nitrogen (N) cycling and herbivore urine could be a central component of the N cycle in grazed ecosystems. Despite its potential role for ecosystem productivity and functioning, the fate of N derived from urine has rarely been investigated in grazed ecosystems. 2. This study explored the fate of N-15-enriched urea in tundra sites that have been either lightly or intensively grazed by reindeer for more than 50years. We followed the fate of the N-15 applied to the plant canopy, at 2weeks and 1year after tracer addition, in the different ecosystem N pools. 3. N-15-urea was rapidly incorporated in cryptogams and in above-ground parts of vascular plants, while the soil microbial pool and plant roots sequestered only a marginal proportion. Furthermore, the litter layer constituted a large sink for the N-15-urea, at least in the short term, indicating a high biological activity in the litter layer and high immobilization in the first phases of organic matter decomposition. 4. Mosses and lichens still constituted the largest sink for the N-15-urea 1year after tracer addition at both levels of grazing intensity demonstrating their large ability to capture and retain N from urine. Despite large fundamental differences in their traits, deciduous and evergreen shrubs were just as efficient as graminoids in taking up the N-15-urea. The total recovery of N-15-urea was lower in the intensively grazed sites, suggesting that reindeer reduce ecosystem N retention. 5. Synthesis. The rapid incorporation of the applied N-15-urea indicates that arctic plants can take advantage of a pulse of incoming N from urine. In addition, N-15 values of all taxa in the heavily grazed sites converged towards the N-15 values for urine, bringing further evidence that urine is an important N source for plants in grazed tundra ecosystems.
  •  
6.
  • Berner, Logan T., et al. (author)
  • The Arctic plant aboveground biomass synthesis dataset
  • 2024
  • In: Scientific Data. - : Springer Nature. - 2052-4463. ; 11:1
  • Journal article (peer-reviewed)abstract
    • Plant biomass is a fundamental ecosystem attribute that is sensitive to rapid climatic changes occurring in the Arctic. Nevertheless, measuring plant biomass in the Arctic is logistically challenging and resource intensive. Lack of accessible field data hinders efforts to understand the amount, composition, distribution, and changes in plant biomass in these northern ecosystems. Here, we present The Arctic plant aboveground biomass synthesis dataset, which includes field measurements of lichen, bryophyte, herb, shrub, and/or tree aboveground biomass (g m−2) on 2,327 sample plots from 636 field sites in seven countries. We created the synthesis dataset by assembling and harmonizing 32 individual datasets. Aboveground biomass was primarily quantified by harvesting sample plots during mid- to late-summer, though tree and often tall shrub biomass were quantified using surveys and allometric models. Each biomass measurement is associated with metadata including sample date, location, method, data source, and other information. This unique dataset can be leveraged to monitor, map, and model plant biomass across the rapidly warming Arctic.
  •  
7.
  • Björkman, Anne, 1981, et al. (author)
  • Plant functional trait change across a warming tundra biome
  • 2018
  • In: Nature. - : Springer Science and Business Media LLC. - 0028-0836 .- 1476-4687. ; 562:7725, s. 57-62
  • Journal article (peer-reviewed)abstract
    • The tundra is warming more rapidly than any other biome on Earth, and the potential ramifications are far-reaching because of global feedback effects between vegetation and climate. A better understanding of how environmental factors shape plant structure and function is crucial for predicting the consequences of environmental change for ecosystem functioning. Here we explore the biome-wide relationships between temperature, moisture and seven key plant functional traits both across space and over three decades of warming at 117 tundra locations. Spatial temperature–trait relationships were generally strong but soil moisture had a marked influence on the strength and direction of these relationships, highlighting the potentially important influence of changes in water availability on future trait shifts in tundra plant communities. Community height increased with warming across all sites over the past three decades, but other traits lagged far behind predicted rates of change. Our findings highlight the challenge of using space-for-time substitution to predict the functional consequences of future warming and suggest that functions that are tied closely to plant height will experience the most rapid change. They also reveal the strength with which environmental factors shape biotic communities at the coldest extremes of the planet and will help to improve projections of functional changes in tundra ecosystems with climate warming.
  •  
8.
  • Björkman, Anne, 1981, et al. (author)
  • Tundra Trait Team: A database of plant traits spanning the tundra biome
  • 2018
  • In: Global Ecology and Biogeography. - : Wiley. - 1466-822X .- 1466-8238. ; 27:12, s. 1402-1411
  • Journal article (peer-reviewed)abstract
    • © 2018 The Authors Global Ecology and Biogeography Published by John Wiley & Sons Ltd Motivation: The Tundra Trait Team (TTT) database includes field-based measurements of key traits related to plant form and function at multiple sites across the tundra biome. This dataset can be used to address theoretical questions about plant strategy and trade-offs, trait–environment relationships and environmental filtering, and trait variation across spatial scales, to validate satellite data, and to inform Earth system model parameters. Main types of variable contained: The database contains 91,970 measurements of 18 plant traits. The most frequently measured traits (>1,000 observations each) include plant height, leaf area, specific leaf area, leaf fresh and dry mass, leaf dry matter content, leaf nitrogen, carbon and phosphorus content, leaf C:N and N:P, seed mass, and stem specific density. Spatial location and grain: Measurements were collected in tundra habitats in both the Northern and Southern Hemispheres, including Arctic sites in Alaska, Canada, Greenland, Fennoscandia and Siberia, alpine sites in the European Alps, Colorado Rockies, Caucasus, Ural Mountains, Pyrenees, Australian Alps, and Central Otago Mountains (New Zealand), and sub-Antarctic Marion Island. More than 99% of observations are georeferenced. Time period and grain: All data were collected between 1964 and 2018. A small number of sites have repeated trait measurements at two or more time periods. Major taxa and level of measurement: Trait measurements were made on 978 terrestrial vascular plant species growing in tundra habitats. Most observations are on individuals (86%), while the remainder represent plot or site means or maximums per species. Software format: csv file and GitHub repository with data cleaning scripts in R; contribution to TRY plant trait database (www.try-db.org) to be included in the next version release.
  •  
9.
  • Callaghan, Terry V., et al. (author)
  • Ecosystem change and stability over multiple decades in the Swedish subarctic : complex processes and multiple drivers
  • 2013
  • In: Philosophical Transactions of the Royal Society of London. Biological Sciences. - : The Royal Society. - 0962-8436 .- 1471-2970. ; 368:1624
  • Journal article (peer-reviewed)abstract
    • The subarctic environment of northernmost Sweden has changed over the past century, particularly elements of climate and cryosphere. This paper presents a unique geo-referenced record of environmental and ecosystem observations from the area since 1913. Abiotic changes have been substantial. Vegetation changes include not only increases in growth and range extension but also counterintuitive decreases, and stability: all three possible responses. Changes in species composition within the major plant communities have ranged between almost no changes to almost a 50 per cent increase in the number of species. Changes in plant species abundance also vary with particularly large increases in trees and shrubs (up to 600%). There has been an increase in abundance of aspen and large changes in other plant communities responding to wetland area increases resulting from permafrost thaw. Populations of herbivores have responded to varying management practices and climate regimes, particularly changing snow conditions. While it is difficult to generalize and scale-up the site-specific changes in ecosystems, this very site-specificity, combined with projections of change, is of immediate relevance to local stakeholders who need to adapt to new opportunities and to respond to challenges. Furthermore, the relatively small area and its unique datasets are a microcosm of the complexity of Arctic landscapes in transition that remains to be documented.
  •  
10.
  • Elmendorf, Sarah C., et al. (author)
  • Plot-scale evidence of tundra vegetation change and links to recent summer warming
  • 2012
  • In: Nature Climate Change. - : Nature Publishing Group. - 1758-678X .- 1758-6798. ; 2:6, s. 453-457
  • Journal article (peer-reviewed)abstract
    • Temperature is increasing at unprecedented rates across most of the tundra biome. Remote-sensing data indicate that contemporary climate warming has already resulted in increased productivity over much of the Arctic, but plot-based evidence for vegetation transformation is not widespread. We analysed change in tundra vegetation surveyed between 1980 and 2010 in 158 plant communities spread across 46 locations.We found biome-wide trends of increased height of the plant canopy and maximum observed plant height for most vascular growth forms; increased abundance of litter; increased abundance of evergreen, low-growing and tall shrubs; and decreased abundance of bare ground. Intersite comparisons indicated an association between the degree of summer warming and change in vascular plant abundance, with shrubs, forbs and rushes increasing with warming. However, the association was dependent on the climate zone, the moisture regime and the presence of permafrost. Our data provide plot-scale evidence linking changes in vascular plant abundance to local summer warming in widely dispersed tundra locations across the globe.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-10 of 18
Type of publication
journal article (15)
other publication (2)
research review (1)
Type of content
peer-reviewed (16)
other academic/artistic (2)
Author/Editor
Michelsen, Anders (18)
Olofsson, Johan (8)
Dorrepaal, Ellen (6)
Lévesque, Esther (5)
Molau, Ulf, 1951 (4)
Alatalo, Juha M. (4)
show more...
Henry, Gregory H.R. (4)
Myers-Smith, Isla H. (4)
Hollister, Robert D. (4)
Rixen, Christian (4)
Cornelissen, J. Hans ... (3)
Forbes, Bruce C. (3)
Grogan, Paul (3)
Oberbauer, Steven F. (3)
Stark, Sari (3)
Elberling, Bo (3)
Björk, Robert G., 19 ... (3)
Soudzilovskaia, Nade ... (3)
Hofgaard, Annika (3)
Barthelemy, Hélène (3)
Iversen, Colleen M. (3)
Elmendorf, Sarah C. (3)
Luoto, Miska (2)
Mack, Michelle C. (2)
Alexander, Heather D ... (2)
Goetz, Scott J. (2)
Johnstone, Jill F. (2)
Johansson, Margareta (2)
Little, Chelsea J. (2)
Grau, Oriol (2)
Björkman, Anne, 1981 (2)
Vandvik, Vigdis (2)
Klanderud, Kari (2)
Wardle, David (2)
Rousk, Kathrin (2)
Nabe-Nielsen, Jacob (2)
Hik, David S. (2)
Te Beest, Mariska (2)
Buchwal, Agata (2)
Hallinger, Martin (2)
Heijmans, Monique M. ... (2)
Normand, Signe (2)
Street, Lorna E. (2)
Wilmking, Martin (2)
Milbau, Ann (2)
Aurela, Mika (2)
Happonen, Konsta (2)
Ninot, Josep M. (2)
Blok, Daan (2)
Prevéy, Janet S. (2)
show less...
University
University of Gothenburg (5)
Lund University (5)
Swedish University of Agricultural Sciences (5)
Uppsala University (1)
Luleå University of Technology (1)
show more...
Halmstad University (1)
Stockholm University (1)
University of Gävle (1)
show less...
Language
English (18)
Research subject (UKÄ/SCB)
Natural sciences (17)
Agricultural Sciences (3)

Year

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view