SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Michelsen Anders) ;pers:(Jonasson Sven)"

Sökning: WFRF:(Michelsen Anders) > Jonasson Sven

  • Resultat 1-6 av 6
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Andresen, Louise C., et al. (författare)
  • Seasonal changes in nitrogen availability, and root and microbial uptake of (15)N(13)C(9)-phenylalanine and (15)N-ammonium in situ at a temperate heath
  • 2011
  • Ingår i: Applied Soil Ecology. - : Elsevier BV. - 0929-1393. ; 51, s. 94-101
  • Tidskriftsartikel (refereegranskat)abstract
    • In the plant biosynthesis of secondary compounds, phenylalanine is a precursor of condensed tannins. Tannins are deposited into the soil in plant root exudates and dead plant material and have been suggested to precipitate some soil nutrients and hence reduce nutrient availability for plants. Free amino acid, inorganic and microbial N concentration during the growing season was investigated in an ecosystem with a natural tannin chemosphere. The influence of tannins on the uptake of nitrogen in plants and microbes was followed by injecting tannic acid (TA), ammonium-(15)N and phenylalanine-(15)N/(13)C(9). Plants preferred ammonium over phenylalanine, while microbes had no preference. Soil microbes had a 77% uptake of intact phenylalanine. Phenylalanine was acquired intact by both grasses and Calluna, with 63% and 38% uptake of intact phenylalanine in grass fine roots and Calluna roots, respectively. Inorganic N and amino acid concentrations were lowest in the period with highest plant activity and grass root biomass but were unaffected by TA addition. (C) 2011 Elsevier B.V. All rights reserved.
  •  
2.
  • Andresen, Louise C., et al. (författare)
  • Uptake of pulse injected nitrogen by soil microbes and mycorrhizal and non-mycorrhizal plants in a species-diverse subarctic heath ecosystem
  • 2008
  • Ingår i: Plant and Soil. - : Springer Science and Business Media LLC. - 0032-079X .- 1573-5036. ; 313:1-2, s. 283-295
  • Tidskriftsartikel (refereegranskat)abstract
    • N-15 labeled ammonium, glycine or glutamic acid was injected into subarctic heath soil in situ, with the purpose of investigating how the nitrogen added in these pulses was subsequently utilized and cycled in the ecosystem. We analyzed the acquisition of N-15 label in mycorrhizal and non-mycorrhizal plants and in soil microorganisms, in order to reveal probable differences in acquisition patterns between the two functional plant types and between plants and soil microorganisms. Three weeks after the label addition, with the N-15-forms added with same amount of nitrogen per square meter, we analyzed the N-15-enrichment in total soil, in soil K2SO4 (0.5 M) extracts and in the microbial biomass after vacuum-incubation of soil in chloroform and subsequent K2SO4 extraction. Furthermore the N-15-enrichment was analyzed in current years leaves of the dominant plant species sampled three, five and 21 days after label addition. The soil microorganisms had very high N-15 recovery from all the N sources compared to plants. Microorganisms incorporated most N-15 from the glutamic acid source, intermediate amounts of N-15 from the glycine source and least N-15 from the NH4+ source. In contrast to microorganisms, all ten investigated plant species generally acquired more N-15 label from the NH4+ source than from the amino acid sources. Non-mycorrhizal plant species showed higher concentration of N-15 label than mycorrhizal plant species 3 days after labeling, while 21 days after labeling their acquisition of N-15 label from amino acid injection was lower than, and the acquisition of N-15 label from NH4 injection was similar to that of the mycorrhizal species. We conclude that the soil microorganisms were more efficient than plants in acquiring pulses of nutrients which, under natural conditions, occur after e. g. freeze-thaw and dry rewet events, although of smaller size. It also appears that the mycorrhizal plants in the short term may be less efficient than non-mycorrhizal plants in nitrogen acquisition, but in a longer term show larger nitrogen acquisition than non-mycorrhizal plants. However, the differences in N-15 uptake patterns may also be due to differences in leaf longevity and woodiness between plant functional groups.
  •  
3.
  • Cornelissen, Johannes H C, et al. (författare)
  • Global negative vegetation feedback to climate warming responses of leaf litter decomposition rates in cold biomes
  • 2007
  • Ingår i: Ecology Letters. - : Wiley. - 1461-023X .- 1461-0248. ; 10:7, s. 619-627
  • Tidskriftsartikel (refereegranskat)abstract
    • Whether climate change will turn cold biomes from large long-term carbon sinks into sources is hotly debated because of the great potential for ecosystem-mediated feedbacks to global climate. Critical are the direction, magnitude and generality of climate responses of plant litter decomposition. Here, we present the first quantitative analysis of the major climate-change-related drivers of litter decomposition rates in cold northern biomes worldwide.Leaf litters collected from the predominant species in 33 global change manipulation experiments in circum-arctic-alpine ecosystems were incubated simultaneously in two contrasting arctic life zones. We demonstrate that longer-term, large-scale changes to leaf litter decomposition will be driven primarily by both direct warming effects and concomitant shifts in plant growth form composition, with a much smaller role for changes in litter quality within species. Specifically, the ongoing warming-induced expansion of shrubs with recalcitrant leaf litter across cold biomes would constitute a negative feedback to global warming. Depending on the strength of other (previously reported) positive feedbacks of shrub expansion on soil carbon turnover, this may partly counteract direct warming enhancement of litter decomposition.
  •  
4.
  • Engelbrecht Clemmensen, Karina, et al. (författare)
  • Site-dependent N uptake from N-form mixtures by arctic plants, soil microbes and ectomycorrhizal fungi
  • 2008
  • Ingår i: Oecologia. - : Springer Science and Business Media LLC. - 1432-1939 .- 0029-8549. ; 155:4, s. 771-783
  • Tidskriftsartikel (refereegranskat)abstract
    • Abstract in UndeterminedSoil microbes constitute an important control on nitrogen (N) turnover and retention in arctic ecosystems where N availability is the main constraint on primary production. Ectomycorrhizal (ECM) symbioses may facilitate plant competition for the specific N pools available in various arctic ecosystems. We report here our study on the N uptake patterns of coexisting plants and microbes at two tundra sites with contrasting dominance of the circumpolar ECM shrub Betula nana. We added equimolar mixtures of glycine-N, NH4+-N and NO3--N, with one N form labelled with N-15 at a time, and in the case of glycine, also labelled with C-13, either directly to the soil or to ECM fungal ingrowth bags. After 2 days, the vegetation contained 5.6, 7.7 and 9.1% (heath tundra) and 7.1, 14.3 and 12.5% (shrub tundra) of the glycine-, NH4+- and NO3--N-15, respectively, recovered in the plant-soil system, and the major part of N-15 in the soil was immobilized by microbes (chloroform fumigation-extraction). In the subsequent 24 days, microbial N turnover transferred about half of the immobilized N-15 to the non-extractable soil organic N pool, demonstrating that soil microbes played a major role in N turnover and retention in both tundra types. The ECM mycelial communities at the two tundras differed in N-form preferences, with a higher contribution of glycine to total N uptake at the heath tundra; however, the ECM mycelial communities at both sites strongly discriminated against NO3-. Betula nana did not directly reflect ECM mycelial N uptake, and we conclude that N uptake by ECM plants is modulated by the N uptake patterns of both fungal and plant components of the symbiosis and by competitive interactions in the soil. Our field study furthermore showed that intact free amino acids are potentially important N sources for arctic ECM fungi and plants as well as for soil microorganisms.
  •  
5.
  • Rinnan, Riikka, et al. (författare)
  • Effects of litter addition and warming on soil carbon, nutrient pools and microbial communities in a subarctic heath ecosystem
  • 2008
  • Ingår i: Applied Soil Ecology. - : Elsevier BV. - 0929-1393. ; 39:3, s. 271-281
  • Tidskriftsartikel (refereegranskat)abstract
    • Climatic warming leads to the expansion of deciduous shrubs and trees in the Arctic. This leads to higher leaf litter inputs, which together with warming may alter the rate of carbon and nutrient cycling in the arctic ecosystems. We assessed effects of factorial warming and additional litter on the soil ecosystem of a subarctic heath in a 7-year-long field experiment. Fine root biomass, dissolved organic carbon (DOC) and total C concentration increased in response to warming, which probably was a result of the increased vegetation cover. Litter addition increased the concentration of inorganic P in the uppermost 5 cm soil, while decreasing the pool of total P per unit area of the organic profile and having no significant effects on N concentrations or pools. Microbial biomass C and N were unaffected by the treatments, while the microbial biomass P increased significantly with litter addition. Soil ergosterol concentration was also slightly increased by the added litter in the uppermost soil, although not statistically significantly. According to a principal component analysis of the phospholipid fatty acid profiles, litter addition differed from the other treatments by increasing the relative proportion of biomarkers for Gram-positive bacteria. The combined warming plus litter addition treatment decreased the soil water content in the uppermost 5 cm soil, which was a likely reason for many interactions between the effects of warming and litter addition. The soil organic matter quality of the combined treatment was also clearly different from the control based on a near-infrared reflectance (NIR) spectroscopic analysis, implying that the treatment altered the composition of soil organic matter. However, it appears that the biological processes and the microbial community composition responded more to the soil and litter moisture conditions than to the change in the quality of the organic matter.
  •  
6.
  • Rinnan, Riikka, et al. (författare)
  • Mineralization and carbon turnover in subarctic heath soil as affected by warming and additional litter
  • 2007
  • Ingår i: Soil Biology & Biochemistry. - : Elsevier BV. - 0038-0717. ; 39:12, s. 3014-3023
  • Tidskriftsartikel (refereegranskat)abstract
    • Arctic soil carbon (C) stocks are threatened by the rapidly advancing global warming. In addition to temperature, increasing amounts of leaf litter fall following from the expansion of deciduous shrubs and trees in northern ecosystems may alter biogeochemical cycling of C and nutrients. Our aim was to assess how factorial warming and litter addition in a long-term field experiment on a subarctic heath affect resource limitation of soil microbial communities (measured by thymidine and leucine incorporation techniques), net growing-season mineralization of nitrogen (N) and phosphorus (P), and carbon turnover (measured as changes in the pools during a growing-season-long field incubation of soil cores in situ). The mainly N limited bacterial communities had shifted slightly towards limitation by C and P in response to seven growing seasons of warming. This and the significantly increased bacterial growth rate under warming may partly explain the observed higher C loss from the warmed soil. This is furthermore consistent with the less dramatic increase in the contents of dissolved organic carbon (DOC) and dissolved organic N (DON) in the warmed soil than in the soil from ambient temperature during the field incubation. The added litter did not affect the carbon content, but it was a source of nutrients to the soil, and it also tended to increase bacterial growth rate and net mineralization of P. The inorganic N pool decreased during the field incubation of soil cores, especially in the separate warming and litter addition treatments, while gross mineralized N was immobilized in the biomass of microbes and plants transplanted into the incubates soil cores, but without any significant effect of the treatments. The effects of warming plus litter addition on bacterial growth rates and of warming on C and N transformations during field incubation suggest that microbial activity is an important control on the carbon balance of arctic soils under climate change.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-6 av 6
Typ av publikation
tidskriftsartikel (6)
Typ av innehåll
refereegranskat (6)
Författare/redaktör
Michelsen, Anders (6)
Ström, Lena (3)
Andresen, Louise C. (2)
Rinnan, Riikka (2)
Molau, Ulf, 1951 (1)
visa fler...
Schmidt, Inger K. (1)
Welker, Jeffrey M. (1)
Lindblad, Karin (1)
Karlsson, Staffan (1)
Bååth, Erland (1)
Alatalo, Juha, 1966- (1)
Jägerbrand, Annika K ... (1)
Totland, O (1)
van Bodegom, Peter M ... (1)
Aerts, Rien (1)
Hik, David S. (1)
Soudzilovskaia, Nade ... (1)
Hofgaard, Annika (1)
Engelbrecht Clemmens ... (1)
Stenström, Anna (1)
Cooper, Elisabeth J. (1)
Onipchenko, Vladimir ... (1)
Jónsdóttir, Ingibjör ... (1)
Magnusson, Borgthor (1)
Callaghan, Terry V. (1)
Dalen, Linda (1)
Gudmundsson, Jon (1)
Gwynn-Jones, Dylan (1)
Cornelissen, Johanne ... (1)
Van Logtestijn, Rich ... (1)
Chapin, Stuart F. (1)
Gerdol, Renato G (1)
Hartley, Anne E (1)
Klein, Julia A (1)
Laundre, Jim (1)
Quested, Helen M. (1)
Sandvik, Sylvi M (1)
Shaver, Gus R. (1)
Solheim, Bjørn S (1)
Tolvanen, Anne (1)
Totland, Ørjan T (1)
Wada, Naoya W (1)
Zhao, Xinquan (1)
Brancaleoni, Lisa (1)
Brancaleoni, Laura (1)
De Beus, Miranda A.H (1)
Harte, John (1)
Hobbie, Sarah E (1)
Hoefsloot, Gerlof (1)
visa färre...
Lärosäte
Lunds universitet (5)
Göteborgs universitet (1)
Uppsala universitet (1)
Stockholms universitet (1)
Högskolan i Gävle (1)
Mälardalens universitet (1)
visa fler...
Jönköping University (1)
VTI - Statens väg- och transportforskningsinstitut (1)
visa färre...
Språk
Engelska (6)
Forskningsämne (UKÄ/SCB)
Naturvetenskap (6)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy