SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Mitchell Paul) ;hsvcat:4"

Sökning: WFRF:(Mitchell Paul) > Lantbruksvetenskap

  • Resultat 1-4 av 4
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Sirami, Clélia, et al. (författare)
  • Increasing crop heterogeneity enhances multitrophic diversity across agricultural regions
  • 2019
  • Ingår i: Proceedings of the National Academy of Sciences of the United States of America. - : Proceedings of the National Academy of Sciences. - 0027-8424 .- 1091-6490. ; 116:33, s. 16442-16447
  • Tidskriftsartikel (refereegranskat)abstract
    • Agricultural landscape homogenization has detrimental effects on biodiversity and key ecosystem services. Increasing agricultural landscape heterogeneity by increasing seminatural cover can help to mitigate biodiversity loss. However, the amount of seminatural cover is generally low and difficult to increase in many intensively managed agricultural landscapes. We hypothesized that increasing the heterogeneity of the crop mosaic itself (hereafter “crop heterogeneity”) can also have positive effects on biodiversity. In 8 contrasting regions of Europe and North America, we selected 435 landscapes along independent gradients of crop diversity and mean field size. Within each landscape, we selected 3 sampling sites in 1, 2, or 3 crop types. We sampled 7 taxa (plants, bees, butterflies, hoverflies, carabids, spiders, and birds) and calculated a synthetic index of multitrophic diversity at the landscape level. Increasing crop heterogeneity was more beneficial for multitrophic diversity than increasing seminatural cover. For instance, the effect of decreasing mean field size from 5 to 2.8 ha was as strong as the effect of increasing seminatural cover from 0.5 to 11%. Decreasing mean field size benefited multitrophic diversity even in the absence of seminatural vegetation between fields. Increasing the number of crop types sampled had a positive effect on landscape-level multitrophic diversity. However, the effect of increasing crop diversity in the landscape surrounding fields sampled depended on the amount of seminatural cover. Our study provides large-scale, multitrophic, cross-regional evidence that increasing crop heterogeneity can be an effective way to increase biodiversity in agricultural landscapes without taking land out of agricultural production.
  •  
2.
  • Alignier, Audrey, et al. (författare)
  • Configurational crop heterogeneity increases within-field plant diversity
  • 2020
  • Ingår i: Journal of Applied Ecology. - : Wiley. - 0021-8901 .- 1365-2664. ; 57:4, s. 654-663
  • Tidskriftsartikel (refereegranskat)abstract
    • Increasing landscape heterogeneity by restoring semi-natural elements to reverse farmland biodiversity declines is not always economically feasible or acceptable to farmers due to competition for land. We hypothesized that increasing the heterogeneity of the crop mosaic itself, hereafter referred to as crop heterogeneity, can have beneficial effects on within-field plant diversity. Using a unique multi-country dataset from a cross-continent collaborative project covering 1,451 agricultural fields within 432 landscapes in Europe and Canada, we assessed the relative effects of compositional and configurational crop heterogeneity on within-field plant diversity components. We also examined how these relationships were modulated by the position within the field. We found strong positive effects of configurational crop heterogeneity on within-field plant alpha and gamma diversity in field interiors. These effects were as high as the effect of semi-natural cover. In field borders, effects of crop heterogeneity were limited to alpha diversity. We suggest that a heterogeneous crop mosaic may overcome the high negative impact of management practices on plant diversity in field interiors, whereas in field borders, where plant diversity is already high, landscape effects are more limited. Synthesis and applications. Our study shows that increasing configurational crop heterogeneity is beneficial to within-field plant diversity. It opens up a new effective and complementary way to promote farmland biodiversity without taking land out of agricultural production. We therefore recommend adopting manipulation of crop heterogeneity as a specific, effective management option in future policy measures, perhaps adding to agri-environment schemes, to contribute to the conservation of farmland plant diversity.
  •  
3.
  • Hagström, Peter, 1967- (författare)
  • Biomass Potential for Heat, Electricity and Vehicle Fuel in Sweden
  • 2006
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • The main objective of this thesis was to determine how far a biomass quantity, equal to the potential produced within the Swedish borders, could cover the present energy needs inSwedenwith respect to economic and ecological circumstances. Three scenarios were studied where the available biomass was converted to heat, electricity and vehicle fuel. Three different amounts of biomass supply were studied for each scenario: 1) potential biomass amounts derived from forestry, non-forest land, forest industry and community; 2) the same amounts as in Case 1, plus the potential biomass amounts derived from agriculture; 3) the same amounts as in Case 1, plus 50% of the potential pulpwood quantity.For evaluating the economic and ecological circumstances of using biomass in the Swedish energy system, the scenarios were complemented with energy, cost and emergy analysis.The scenarios indicated that it may be possible to produce 170.2 PJ (47.3 TWh) per year of electricity from the biomass amounts in Case 2. From the same amount of biomass, the maximum annual production of hydrogen was 241.5 PJ (67.1 TWh) per year or 197.2 PJ (54.8 TWh) per year of methanol.The energy analysis showed that the ratio of energy output to energy input for large-scale applications ranged from 1.9 at electric power generation by gasification of straw to 40 at district heating generation by combustion of recovered wood. The cost of electricity at gasification ranged from 7.95 to 22.58 €/GJ. The cost of vehicle work generated by using hydrogen produced from forestry biomass in novel fuel cells was economically competitive compared to today’s propulsion systems. However, the cost of vehicle work generated by using methanol produced from forestry biomass in combustion engines was rather higher compared to use of petrol in petrol engines.The emergy analysis indicated that the only biomass assortment studied with a larger emergy flow from the local environment, in relation to the emergy flow invested from society after conversion, was fuel wood from non-forest land. However, even use of this biomass assortment for production of heat, electricity or vehicle fuels had smaller yields of emergy output in relation to emergy invested from society compared to alternative conversion processes; thus, the net contribution of emergy generated to the economy was smaller compared to these alternative conversion processes.
  •  
4.
  • Lin, Yan-Shih, et al. (författare)
  • Optimal stomatal behaviour around the world
  • 2015
  • Ingår i: Nature Climate Change. - 1758-6798 .- 1758-678X. ; 5:5, s. 459-464
  • Tidskriftsartikel (refereegranskat)abstract
    • Stomatal conductance (g(s)) is a key land-surface attribute as it links transpiration, the dominant component of global land evapotranspiration, and photosynthesis, the driving force of the global carbon cycle. Despite the pivotal role of g(s) in predictions of global water and carbon cycle changes, a global-scale database and an associated globally applicable model of g(s) that allow predictions of stomatal behaviour are lacking. Here, we present a database of globally distributed g(s) obtained in the field for a wide range of plant functional types (PFTs) and biomes. We find that stomatal behaviour differs among PFTs according to their marginal carbon cost of water use, as predicted by the theory underpinning the optimal stomatal model(1) and the leaf and wood economics spectrum(2,3). We also demonstrate a global relationship with climate. These findin g(s) provide a robust theoretical framework for understanding and predicting the behaviour of g(s) across biomes and across PFTs that can be applied to regional, continental and global-scale modelling of ecosystem productivity, energy balance and ecohydrological processes in a future changing climate.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-4 av 4

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy