SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Molau Ulf) ;lar1:(vti)"

Sökning: WFRF:(Molau Ulf) > VTI - Statens väg- och transportforskningsinstitut

  • Resultat 1-10 av 13
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Alatalo, Juha M., et al. (författare)
  • Climate change and climatic events: community-, functional- and species-level responses of bryophytes and lichens to constant, stepwise, and pulse experimental warming in an alpine tundra
  • 2014
  • Ingår i: Alpine Botany. - : Springer Science and Business Media LLC. - 1664-2201 .- 1664-221X. ; 124:2, s. 81-91
  • Tidskriftsartikel (refereegranskat)abstract
    • We experimentally imposed three different kinds of warming scenarios over 3 years on an alpine meadow community to identify the differential effects of climate warming and extreme climatic events on the abundance and biomass of bryophytes and lichens. Treatments consisted of (a) a constant level of warming with open top chambers (an average temperature increase of 1.87 A degrees C), (b) a yearly stepwise increase of warming (average temperature increases of 1.0; 1.87 and 3.54 A degrees C, consecutively), and (c) a pulse warming, i.e., a single first year pulse event of warming (average temperature increase of 3.54 A degrees C only during the first year). To our knowledge, this is the first climate change study that attempts to distinguish between the effects of constant, stepwise and pulse warming on bryophyte and lichen communities. We hypothesised that pulse warming would have a significant short-term effect compared to the other warming treatments, and that stepwise warming would have a significant mid-term effect compared to the other warming treatments. Acrocarpous bryophytes as a group increased in abundance and biomass to the short-term effect of pulse warming. We found no significant effects of mid-term (third-year) stepwise warming. However, one pleurocarpous bryophyte species, Tomentypnum nitens, generally increased in abundance during the warm year 1997 but decreased in control plots and in response to the stepwise warming treatment. Three years of experimental warming (all treatments as a group) did have a significant impact at the community level, yet changes in abundance did not translate into significant changes in the dominance hierarchies at the functional level (for acrocarpous bryophytes, pleurocarpous bryophytes, Sphagnum or lichens), or in significant changes in other bryophyte or lichen species. The results suggest that bryophytes and lichens, both at the functional group and species level, to a large extent are resistant to the different climate change warming simulations that were applied.
  •  
2.
  • Alatalo, Juha M., et al. (författare)
  • Dominance hierarchies, diversity and species richness of vascular plants in an alpine meadow: Contrasting short and medium termresponses to simulated global change
  • 2014
  • Ingår i: PeerJ. - : PeerJ Inc.. - 2167-8359. ; 2014:1
  • Tidskriftsartikel (refereegranskat)abstract
    • We studied the impact of simulated global change on a high alpine meadow plant community. Specifically, we examined whether short-term (5 years) responses are good predictors for medium-term (7 years) changes in the system by applying a factorial warming and nutrient manipulation to 20 plots in Latnjajaure, subarctic Sweden. Seven years of experimental warming and nutrient enhancement caused dramatic shifts in dominance hierarchies in response to the nutrient and the combined warming and nutrient enhancement treatments. Dominance hierarchies in the meadow moved from a community being dominated by cushion plants, deciduous, and evergreen shrubs to a community being dominated by grasses, sedges, and forbs. Short-termresponses were shown to be inconsistent in their ability to predict medium-term responses for most functional groups, however, grasses showed a consistent and very substantial increase in response to nutrient addition over the seven years. The non-linear responses over time point out the importance of longer-term studies with repeated measurements to be able to better predict future changes. Forecasted changes to temperature and nutrient availability have implications for trophic interactions, and may ultimately influence the access to and palatability of the forage for grazers. Depending on what anthropogenic change will be most pronounced in the future (increase in nutrient deposits, warming, or a combination of them both), different shifts in community dominance hierarchies may occur. Generally, this study supports the productivity-diversity relationship found across arctic habitats, with community diversity peaking in mid-productivity systems and degrading as nutrient availability increases further. This is likely due the increasing competition in plant-plant interactions and the shifting dominance structure with grasses taking over the experimental plots, suggesting that global change could have high costs to biodiversity in the Arctic. © 2014 Alatalo et al.
  •  
3.
  • Alatalo, J. M., et al. (författare)
  • Impacts of different climate change regimes and extreme climatic events on an alpine meadow community
  • 2016
  • Ingår i: Scientific Reports. - : Springer Science and Business Media LLC. - 2045-2322. ; 6
  • Tidskriftsartikel (refereegranskat)abstract
    • Climate variability is expected to increase in future but there exist very few experimental studies that apply different warming regimes on plant communities over several years. We studied an alpine meadow community under three warming regimes over three years. Treatments consisted of (a) a constant level of warming with open-top chambers (ca. 1.9 degrees C above ambient), (b) yearly stepwise increases in warming (increases of ca. 1.0, 1.9 and 3.5 degrees C), and (c) pulse warming, a single first-year pulse event of warming (increase of ca. 3.5 degrees C). Pulse warming and stepwise warming was hypothesised to cause distinct first-year and third-year effects, respectively. We found support for both hypotheses; however, the responses varied among measurement levels (whole community, canopy, bottom layer, and plant functional groups), treatments, and time. Our study revealed complex responses of the alpine plant community to the different experimentally imposed climate warming regimes. Plant cover, height and biomass frequently responded distinctly to the constant level of warming, the stepwise increase in warming and the extreme pulse-warming event. Notably, we found that stepwise warming had an accumulating effect on biomass, the responses to the different warming regimes varied among functional groups, and the short-term perturbations had negative effect on species richness and diversity
  •  
4.
  • Alatalo, Juha M., et al. (författare)
  • Seven years of experimental warming and nutrient addition causes decline of bryophytes and lichens in alpine meadow and heath communities
  • 2024
  • Annan publikation (övrigt vetenskapligt/konstnärligt)abstract
    • Global change is predicted to have large and rapid impact on polar and alpine regions. Bryophytes and lichens increase their importance in terms of biomass, carbon/nutrient cycling, cover and ecosystem functioning at higher latitudes/altitudes. Here we report from a seven year factorial experiment with nutrient addition and warming on the abundance of bryophytes and lichens in an alpine meadow and heath community. Treatments had significant negative effect on relative change of total abundance bryophytes and lichens, the largest decline to the nutrient addition and the combined nutrient addition and warming treatments, bryophytes decreasing most in the meadow, lichens most in the heath. Nutrient addition, and the combined nutrient addition and warming brought rapid decrease in both bryophytes and lichens, while warming had a delayed negative impact. Of sixteen species that were included the statistical analyses, we found significant negative effects on seven species. We show that impact of simulated global change on bryophytes and lichens differ in in time and magnitude among treatments and plant communities. Our results underscore the importance of longer-term studies to improve the quality of climate change models, as short-term studies are poor predictors of longer-term responses of bryophytes and lichens, similar to what have been shown for vascular plants. Species-specific responses may differ in time, and this will likely cause changes in the dominance structures of bryophytes and lichens over time.
  •  
5.
  • Alatalo, Juha M, 1966-, et al. (författare)
  • Testing reliability of short-term responses to predict longer-term responses of bryophytes and lichens to environmental change
  • 2015
  • Ingår i: Ecological Indicators. - : Elsevier BV. - 1470-160X .- 1872-7034. ; 58, s. 77-85
  • Tidskriftsartikel (refereegranskat)abstract
    • Environmental changes are predicted to have severe and rapid impacts on polar and alpine regions. At high latitudes/altitudes, cryptogams such as bryophytes and lichens are of great importance in terms of biomass, carbon/nutrient cycling, cover and ecosystem functioning. This seven-year factorial experiment examined the effects of fertilizing and experimental warming on bryophyte and lichen abundance in an alpine meadow and a heath community in subarctic Sweden. The aim was to determine whether shortterm responses (five years) are good predictors of longer-term responses (seven years). Fertilizing and warming had significant negative effects on total and relative abundance of bryophytes and lichens, with the largest and most rapid decline caused by fertilizing and combined fertilizing and warming. Bryophytes decreased most in the alpine meadow community, which was bryophyte-dominated, and lichens decreased most in the heath community, which was lichen-dominated. This was surprising, as the most diverse group in each community was expected to be most resistant to perturbation. Warming alone had a delayed negative impact. Of the 16 species included in statistical analyses, seven were significantly negatively affected. Overall, the impacts of simulated warming on bryophytes and lichens as a whole and on individual species differed in time and magnitude between treatments and plant communities (meadow and heath). This will likely cause changes in the dominance structures over time. These results underscore the importance of longer-term studies to improve the quality of data used in climate change models, as models based on short-term data are poor predictors of long-term responses of bryophytes and lichens. (C) 2015 Elsevier Ltd. All rights reserved.
  •  
6.
  • Alatalo, Juha M., et al. (författare)
  • Vascular plant abundance and diversity in an alpine heath under observed and simulated global change
  • 2015
  • Ingår i: Scientific Reports. - : Springer Science and Business Media LLC. - 2045-2322. ; 5
  • Tidskriftsartikel (refereegranskat)abstract
    • Global change is predicted to cause shifts in species distributions and biodiversity in arctic tundra. We applied factorial warming and nutrient manipulation to a nutrient and species poor alpine/arctic heath community for seven years. Vascular plant abundance in control plots increased by 31%. There were also notable changes in cover in the nutrient and combined nutrient and warming treatments, with deciduous and evergreen shrubs declining, grasses overgrowing these plots. Sedge abundance initially increased significantly with nutrient amendment and then declined, going below initial values in the combined nutrient and warming treatment. Nutrient addition resulted in a change in dominance hierarchy from deciduous shrubs to grasses. We found significant declines in vascular plant diversity and evenness in the warming treatment and a decline in diversity in the combined warming and nutrient addition treatment, while nutrient addition caused a decline in species richness. The results give some experimental support that species poor plant communities with low diversity may be more vulnerable to loss of species diversity than communities with higher initial diversity. The projected increase in nutrient deposition and warming may therefore have negative impacts on ecosystem processes, functioning and services due to loss of species diversity in an already impoverished environment.
  •  
7.
  • Ali, A., et al. (författare)
  • Diversity-productivity dependent resistance of an alpine plant community to different climate change scenarios
  • 2016
  • Ingår i: Ecological Research. - : Wiley. - 0912-3814 .- 1440-1703. ; 31:6, s. 935-945
  • Tidskriftsartikel (refereegranskat)abstract
    • Here we report from a experiment imposing different warming scenarios [control with ambient temperature, constant level of moderate warming for 3 years, stepwise increase in warming for 3 years, and one season of high level warming (pulse) simulating an extreme summer event] on an alpine ecosystem to study the impact on species diversity-biomass relationship, and community resistance in terms of biomass production. Multiple linear mixed models indicate that experimental years had stronger influence on biomass than warming scenarios and species diversity. Species diversity and biomass had almost humpback relationships under different warming scenarios over different experimental years. There was generally a negative diversity-biomass relationship, implying that a positive diversity-biomass relationship was not the case. The application of different warming scenarios did not change this tendency. The change in community resistance to all warming scenarios was generally negatively correlated with increasing species diversity, the strength of the correlation varying both between treatments and between years within treatments. The strong effect of experimental years was consistent with the notion that niche complementarity effects increase over time, and hence, higher biomass productivity over experimental years. The strongest negative relationship was found in the first year of the pulse treatment, indicating that the community had weak resistance to an extreme event of one season of abnormally warm climate. Biomass production started recovering during the two subsequent years. Contrasting biomass-related resistance emerged in the different treatments, indicating that micro sites within the same plant community may differ in their resistance to different warming scenarios.
  •  
8.
  • Cornelissen, Johannes H C, et al. (författare)
  • Global negative vegetation feedback to climate warming responses of leaf litter decomposition rates in cold biomes
  • 2007
  • Ingår i: Ecology Letters. - : Wiley. - 1461-023X .- 1461-0248. ; 10:7, s. 619-627
  • Tidskriftsartikel (refereegranskat)abstract
    • Whether climate change will turn cold biomes from large long-term carbon sinks into sources is hotly debated because of the great potential for ecosystem-mediated feedbacks to global climate. Critical are the direction, magnitude and generality of climate responses of plant litter decomposition. Here, we present the first quantitative analysis of the major climate-change-related drivers of litter decomposition rates in cold northern biomes worldwide.Leaf litters collected from the predominant species in 33 global change manipulation experiments in circum-arctic-alpine ecosystems were incubated simultaneously in two contrasting arctic life zones. We demonstrate that longer-term, large-scale changes to leaf litter decomposition will be driven primarily by both direct warming effects and concomitant shifts in plant growth form composition, with a much smaller role for changes in litter quality within species. Specifically, the ongoing warming-induced expansion of shrubs with recalcitrant leaf litter across cold biomes would constitute a negative feedback to global warming. Depending on the strength of other (previously reported) positive feedbacks of shrub expansion on soil carbon turnover, this may partly counteract direct warming enhancement of litter decomposition.
  •  
9.
  •  
10.
  • Jägerbrand, Annika K, 1972-, et al. (författare)
  • Effects of neighboring vascular plants on the abundance of bryophytes in different vegetation types
  • 2012
  • Ingår i: Polar Science. - Oxford : Elsevier BV. - 1873-9652 .- 1876-4428. ; 6:2, s. 200-208
  • Tidskriftsartikel (refereegranskat)abstract
    • Due to the climate change, vegetation of tundra ecosystems is predicted to shift toward shrub and tree dominance, and this change may influence bryophytes. To estimate how changes in growing environment and the dominance of vascular plants influence bryophyte abundance, we compared the relationship of occurrence of bryophytes among other plant types in a five-year experiment of warming (T), fertilization (F) and T + F in two vegetation types, heath and meadow, in a subarctic–alpine ecosystem. We compared individual leaf area among shrub species to confirm that deciduous shrubs might cause severe shading effect. Effects of neighboring functional types on the performance of Hylocomium splendens was also analyzed. Results show that F and T + F treatments significantly influenced bryophyte abundance negatively. Under natural conditions, bryophytes in the heath site were negatively related to the abundance of shrubs and lichens and the relationship between lichens and bryophytes strengthened after the experimental period. After five years of experimental treatments in the meadow, a positive abundance relationship emerged between bryophytes and deciduous shrubs, evergreen shrubs and forbs. This relationship was not found in the heath site. Our study therefore shows that the abundance relationships between bryophytes and plants in two vegetation types within the same area can be different. Deciduous shrubs had larger leaf area than evergreen shrubs but did not show any shading effect on H. splendens.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 13
Typ av publikation
tidskriftsartikel (12)
annan publikation (1)
Typ av innehåll
refereegranskat (12)
övrigt vetenskapligt/konstnärligt (1)
Författare/redaktör
Molau, Ulf, 1951 (11)
Jägerbrand, Annika K ... (8)
Alatalo, Juha M. (6)
Alatalo, Juha, 1966- (4)
Jägerbrand, Annika, ... (4)
Molau, Ulf (2)
visa fler...
Alatalo, J. M. (2)
Little, C. J. (2)
Bai, Y. (1)
Schmidt, Inger K. (1)
Welker, Jeffrey M. (1)
Ali, A. (1)
Lindblad, Karin (1)
Karlsson, Staffan (1)
Jägerbrand, Annika K ... (1)
Michelsen, Anders (1)
Little, Chelsea J. (1)
Alatalo, Juha M, 196 ... (1)
Totland, O (1)
van Bodegom, Peter M ... (1)
Lindblad, M (1)
Aerts, Rien (1)
Björk, Robert G., 19 ... (1)
Jonasson, Sven (1)
Hik, David S. (1)
Soudzilovskaia, Nade ... (1)
Hofgaard, Annika (1)
Lindblad, Karin, 197 ... (1)
Stenström, Anna (1)
Cooper, Elisabeth J. (1)
Onipchenko, Vladimir ... (1)
Jónsdóttir, Ingibjör ... (1)
Magnusson, Borgthor (1)
Callaghan, Terry V. (1)
Dalen, Linda (1)
Gudmundsson, Jon (1)
Gwynn-Jones, Dylan (1)
Cornelissen, Johanne ... (1)
Van Logtestijn, Rich ... (1)
Chapin, Stuart F. (1)
Gerdol, Renato G (1)
Hartley, Anne E (1)
Klein, Julia A (1)
Laundre, Jim (1)
Quested, Helen M. (1)
Sandvik, Sylvi M (1)
Shaver, Gus R. (1)
Solheim, Bjørn S (1)
Tolvanen, Anne (1)
Totland, Ørjan T (1)
visa färre...
Lärosäte
Högskolan i Gävle (13)
Jönköping University (13)
Göteborgs universitet (11)
Uppsala universitet (10)
Mälardalens universitet (4)
visa fler...
Stockholms universitet (1)
visa färre...
Språk
Engelska (13)
Forskningsämne (UKÄ/SCB)
Naturvetenskap (13)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy