SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Molau Ulf) ;pers:(Alatalo J. M.)"

Sökning: WFRF:(Molau Ulf) > Alatalo J. M.

  • Resultat 1-10 av 10
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Alatalo, J. M., et al. (författare)
  • Bryophyte cover and richness decline after 18 years of experimental warming in alpine Sweden
  • 2020
  • Ingår i: Aob Plants. - Oxford : Oxford University Press (OUP). - 2041-2851. ; 12:6
  • Tidskriftsartikel (refereegranskat)abstract
    • Climate change is expected to affect alpine and Arctic tundra communities. Most previous long-term studies have focused on impacts on vascular plants, this study examined impacts of long-term warming on bryophyte communities. Experimental warming with open-top chambers (OTCs) was applied for 18 years to a mesic meadow and a dry heath alpine plant community. Species abundance was measured in 1995, 1999, 2001 and 2013. Species composition changed significantly from original communities in the heath, but remained similar in mesic meadow. Experimental warming increased beta diversity in the heath. Bryophyte cover and species richness both declined with long-term warming, while Simpson diversity showed no significant responses. Over the 18-year period, bryophyte cover in warmed plots decreased from 43 % to 11 % in heath and from 68 % to 35 % in meadow (75 % and 48 % decline, respectively, in original cover), while richness declined by 39 % and 26 %, respectively. Importantly, the decline in cover and richness first emerged after 7 years. Warming caused significant increase in litter in both plant communities. Deciduous shrub and litter cover had negative impact on bryophyte cover. We show that bryophyte species do not respond similarly to climate change. Total bryophyte cover declined in both heath and mesic meadow under experimental long-term warming (by 1.5-3 degrees C), driven by general declines in many species. Principal response curve, cover and richness results suggested that bryophytes in alpine heath are more susceptible to warming than in meadow, supporting the suggestion that bryophytes may be less resistant in drier environments than in wetter habitats. Species loss was slower than the decline in bryophyte abundance, and diversity remained similar in both communities. Increased deciduous shrub and litter cover led to decline in bryophyte cover. The non-linear response to warming over time underlines the importance of long-term experiments and monitoring.
  •  
2.
  • Alatalo, J. M., et al. (författare)
  • Changes in plant composition and diversity in an alpine heath and meadow after 18 years of experimental warming
  • 2022
  • Ingår i: Alpine Botany. - Basel : Springer Science and Business Media LLC. - 1664-2201 .- 1664-221X. ; 132, s. 181-193
  • Tidskriftsartikel (refereegranskat)abstract
    • Global warming is expected to have large impacts on high alpine and Arctic ecosystems in the future. Here we report effects of 18 years of experimental warming on two contrasting high alpine plant communities in subarctic Sweden. Using open-top chambers, we analysed effects of long-term passive experimental warming on a heath and a meadow. We determined the impact on species composition, species diversity (at the level of rare, common and dominant species), and phylogenetic and functional diversity. Long-term warming drove differentiation in species composition in both communities; warmed plots, but not control plots, had distinctly different species composition in 2013 compared with 1995. Beta diversity increased in the meadow, while it decreased in the heath. Long-term warming had significant negative effects on the three orders of phylogenetic Hill diversity in the meadow. There was a similar tendency in the heath, but only phylogenetic diversity of dominant species was significantly affected. Long-term warming caused reductions in forbs in the heath, while evergreen shrubs increased. In the meadow, deciduous and evergreen shrubs showed increased abundance from 2001 to 2013 in warmed plots. Responses in species and phylogenetic diversity to experimental warming varied over both time (medium (7 years) vs long-term (18 years)) and space (between two neighbouring plant communities). The meadow community was more negatively affected in terms of species and phylogenetic diversity than the heath community. A potential driver for the changes in the meadow may be decreased soil moisture caused by long-term warming.
  •  
3.
  • Alatalo, J. M., et al. (författare)
  • Effects of ambient climate and three warming treatments on fruit production in an alpine, subarctic meadow community
  • 2021
  • Ingår i: American Journal of Botany. - Oxford : Wiley. - 0002-9122 .- 1537-2197. ; 108:3, s. 411-422
  • Tidskriftsartikel (refereegranskat)abstract
    • Premise Climate change is having major impacts on alpine and arctic regions, and inter-annual variations in temperature are likely to increase. How increased climate variability will impact plant reproduction is unclear. Methods In a 4-year study on fruit production by an alpine plant community in northern Sweden, we applied three warming regimes: (1) a static level of warming with open-top chambers (OTC), (2) press warming, a yearly stepwise increase in warming, and (3) pulse warming, a single-year pulse event of higher warming. We analyzed the relationship between fruit production and monthly temperatures during the budding period, fruiting period, and whole fruit production period and the effect of winter and summer precipitation on fruit production. Results Year and treatment had a significant effect on total fruit production by evergreen shrubs, Cassiope tetragona, and Dryas octopetala, with large variations between treatments and years. Year, but not treatment, had a significant effect on deciduous shrubs and graminoids, both of which increased fruit production over the 4 years, while forbs were negatively affected by the press warming, but not by year. Fruit production was influenced by ambient temperature during the previous-year budding period, current-year fruiting period, and whole fruit production period. Minimum and average temperatures were more important than maximum temperature. In general, fruit production was negatively correlated with increased precipitation. Conclusions These results indicate that predicted increased climate variability and increased precipitation due to climate change may affect plant reproductive output and long-term community dynamics in alpine meadow communities.
  •  
4.
  • Alatalo, J. M., et al. (författare)
  • Impact of ambient temperature, precipitation and seven years of experimental warming and nutrient addition on fruit production in an alpine heath and meadow community
  • 2022
  • Ingår i: Science of the Total Environment. - Amsterdam : Elsevier BV. - 0048-9697 .- 1879-1026. ; 836
  • Tidskriftsartikel (refereegranskat)abstract
    • Alpine and polar regions are predicted to be among the most vulnerable to changes in temperature, precipitation, and nutrient availability. We carried out a seven-year factorial experiment with warming and nutrient addition in two alpine vegetation communities. We analyzed the relationship between fruit production and monthly mean, maximum, and min temperatures during the fall of the pre-fruiting year, the fruiting summer, and the whole fruit production period, and measured the effects of precipitation and growing and thawing degree days (GDD & TDD) on fruit production. Nutrient addition (heath: 27.88 +/- 3.19 fold change at the end of the experiment; meadow: 18.02 +/- 4.07) and combined nutrient addition and warming (heath: 20.63 +/- 29.34 fold change at the end of the experiment; meadow: 18.21 +/- 16.28) increased total fruit production and fruit production of graminoids. Fruit production of evergreen and deciduous shrubs fluctuated among the treatments and years in both the heath and meadow. Pre-maximum temperatures had a negative effect on fruit production in both communities, while current year maximum temperatures had a positive impact on fruit production in the meadow. Pre-minimum, pre-mean, current mean, total minimum, and total mean temperatures were all positively correlated with fruit production in the meadow. The current year and total precipitation had a negative effect on the fruit production of deciduous shrubs in the heath. GDD had a positive effect on fruit production in both communities, while TDD only impacted fruit production in the meadow. Increased nutrient availability increased fruit production over time in the high alpine plant communities, while experimental warming had either no effect or a negative effect. Deciduous shrubs were the most sensitive to climate parameters in both communities, and the meadow was more sensitive than the heath. The difference in importance of TDD for fruit production may be due to differences in snow cover in the two communities.
  •  
5.
  • Alatalo, J. M., et al. (författare)
  • Impacts of different climate change regimes and extreme climatic events on an alpine meadow community
  • 2016
  • Ingår i: Scientific Reports. - : Springer Science and Business Media LLC. - 2045-2322. ; 6
  • Tidskriftsartikel (refereegranskat)abstract
    • Climate variability is expected to increase in future but there exist very few experimental studies that apply different warming regimes on plant communities over several years. We studied an alpine meadow community under three warming regimes over three years. Treatments consisted of (a) a constant level of warming with open-top chambers (ca. 1.9 degrees C above ambient), (b) yearly stepwise increases in warming (increases of ca. 1.0, 1.9 and 3.5 degrees C), and (c) pulse warming, a single first-year pulse event of warming (increase of ca. 3.5 degrees C). Pulse warming and stepwise warming was hypothesised to cause distinct first-year and third-year effects, respectively. We found support for both hypotheses; however, the responses varied among measurement levels (whole community, canopy, bottom layer, and plant functional groups), treatments, and time. Our study revealed complex responses of the alpine plant community to the different experimentally imposed climate warming regimes. Plant cover, height and biomass frequently responded distinctly to the constant level of warming, the stepwise increase in warming and the extreme pulse-warming event. Notably, we found that stepwise warming had an accumulating effect on biomass, the responses to the different warming regimes varied among functional groups, and the short-term perturbations had negative effect on species richness and diversity
  •  
6.
  • Alatalo, J. M., et al. (författare)
  • Responses of lichen communities to 18 years of natural and experimental warming
  • 2017
  • Ingår i: Annals of Botany. - : Oxford University Press (OUP). - 0305-7364 .- 1095-8290. ; 120:1, s. 159-170
  • Tidskriftsartikel (refereegranskat)abstract
    • Background and Aims Climate change is expected to have major impacts on high alpine and arctic ecosystems in the future, but empirical data on the impact of long-term warming on lichen diversity and richness are sparse. This study report the effects of 18 years of ambient and experimental warming on lichens and vascular plant cover in two alpine plant communities, a dry heath with sparse canopy cover (54 %) and a mesic meadow with a more developed (67 %) canopy cover, in sub-arctic Sweden. Methods The effects of long-term passive experimental warming using open top chambers (OTCs) on lichens and total vascular plant cover, and the impact of plant cover on lichen community parameters, were analysed. Key Results Between 1993 and 2013, mean annual temperature increased about 2 degrees C. Both site and experimental warming had a significant effect on cover, species richness, effective number of species evenness of lichens, and total plant canopy cover. Lichen cover increased in the heath under ambient conditions, and remained more stable under experimental warming. The negative effect on species richness and effective number of species was driven by a decrease in lichens under experimental warming in the meadow. Lichen cover, species richness, effective number of species evenness were negatively correlated with plant canopy cover. There was a significant negative impact on one species and a non-significant tendency of lower abundance of the most common species in response to experimental warming. Conclusions The results from the long-term warming study imply that arctic and high alpine lichen communities are likely to be negatively affected by climate change and an increase in plant canopy cover. Both biotic and abiotic factors are thus important for future impacts of climate change on lichens.
  •  
7.
  • Ali, A., et al. (författare)
  • Diversity-productivity dependent resistance of an alpine plant community to different climate change scenarios
  • 2016
  • Ingår i: Ecological Research. - : Wiley. - 0912-3814 .- 1440-1703. ; 31:6, s. 935-945
  • Tidskriftsartikel (refereegranskat)abstract
    • Here we report from a experiment imposing different warming scenarios [control with ambient temperature, constant level of moderate warming for 3 years, stepwise increase in warming for 3 years, and one season of high level warming (pulse) simulating an extreme summer event] on an alpine ecosystem to study the impact on species diversity-biomass relationship, and community resistance in terms of biomass production. Multiple linear mixed models indicate that experimental years had stronger influence on biomass than warming scenarios and species diversity. Species diversity and biomass had almost humpback relationships under different warming scenarios over different experimental years. There was generally a negative diversity-biomass relationship, implying that a positive diversity-biomass relationship was not the case. The application of different warming scenarios did not change this tendency. The change in community resistance to all warming scenarios was generally negatively correlated with increasing species diversity, the strength of the correlation varying both between treatments and between years within treatments. The strong effect of experimental years was consistent with the notion that niche complementarity effects increase over time, and hence, higher biomass productivity over experimental years. The strongest negative relationship was found in the first year of the pulse treatment, indicating that the community had weak resistance to an extreme event of one season of abnormally warm climate. Biomass production started recovering during the two subsequent years. Contrasting biomass-related resistance emerged in the different treatments, indicating that micro sites within the same plant community may differ in their resistance to different warming scenarios.
  •  
8.
  • Baruah, G., et al. (författare)
  • Community and species-specific responses of plant traits to 23 years of experimental warming across subarctic tundra plant communities
  • 2017
  • Ingår i: Scientific Reports. - : Springer Science and Business Media LLC. - 2045-2322. ; 7
  • Tidskriftsartikel (refereegranskat)abstract
    • To improve understanding of how global warming may affect competitive interactions among plants, information on the responses of plant functional traits across species to long-term warming is needed. Here we report the effect of 23 years of experimental warming on plant traits across four different alpine subarctic plant communities: tussock tundra, Dryas heath, dry heath and wet meadow. Open-top chambers (OTCs) were used to passively warm the vegetation by 1.5-3 degrees C. Changes in leaf width, leaf length and plant height of 22 vascular plant species were measured. Long-term warming significantly affected all plant traits. Overall, plant species were taller, with longer and wider leaves, compared with control plots, indicating an increase in biomass in warmed plots, with 13 species having significant increases in at least one trait and only three species having negative responses. The response varied among species and plant community in which the species was sampled, indicating community-warming interactions. Thus, plant trait responses are both species- and community-specific. Importantly, we show that there is likely to be great variation between plant species in their ability to maintain positive growth responses over the longer term, which might cause shifts in their relative competitive ability.
  •  
9.
  • Collins, C. G., et al. (författare)
  • Experimental warming differentially affects vegetative and reproductive phenology of tundra plants
  • 2021
  • Ingår i: Nature Communications. - : Springer Science and Business Media LLC. - 2041-1723. ; 12:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Rapid climate warming is altering Arctic and alpine tundra ecosystem structure and function, including shifts in plant phenology. While the advancement of green up and flowering are well-documented, it remains unclear whether all phenophases, particularly those later in the season, will shift in unison or respond divergently to warming. Here, we present the largest synthesis to our knowledge of experimental warming effects on tundra plant phenology from the International Tundra Experiment. We examine the effect of warming on a suite of season-wide plant phenophases. Results challenge the expectation that all phenophases will advance in unison to warming. Instead, we find that experimental warming caused: (1) larger phenological shifts in reproductive versus vegetative phenophases and (2) advanced reproductive phenophases and green up but delayed leaf senescence which translated to a lengthening of the growing season by approximately 3%. Patterns were consistent across sites, plant species and over time. The advancement of reproductive seasons and lengthening of growing seasons may have significant consequences for trophic interactions and ecosystem function across the tundra. It is unclear whether climate driven phenological shifts of tundra plants are consistent across the plant growing season. Here the authors analyse data from a network of field warming experiments in Arctic and alpine tundra, finding that warming differentially affects the timing and duration of reproductive and vegetative phenology.
  •  
10.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 10

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy