SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Moreau Yves) ;hsvcat:1"

Sökning: WFRF:(Moreau Yves) > Naturvetenskap

  • Resultat 1-4 av 4
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Oldenhof, Martijn, et al. (författare)
  • Industry-Scale Orchestrated Federated Learning for Drug Discovery
  • 2023
  • Ingår i: Proceedings of the 37th AAAI Conference on Artificial Intelligence, AAAI 2023. ; 37, s. 15576-15584
  • Konferensbidrag (refereegranskat)abstract
    • To apply federated learning to drug discovery we developed a novel platform in the context of European Innovative Medicines Initiative (IMI) project MELLODDY (grant n°831472), which was comprised of 10 pharmaceutical companies, academic research labs, large industrial companies and startups. The MELLODDY platform was the first industry-scale platform to enable the creation of a global federated model for drug discovery without sharing the confidential data sets of the individual partners. The federated model was trained on the platform by aggregating the gradients of all contributing partners in a cryptographic, secure way following each training iteration. The platform was deployed on an Amazon Web Services (AWS) multi-account architecture running Kubernetes clusters in private subnets. Organisationally, the roles of the different partners were codified as different rights and permissions on the platform and administrated in a decentralized way. The MELLODDY platform generated new scientific discoveries which are described in a companion paper.
  •  
2.
  •  
3.
  • Guala, Dimitri, 1979- (författare)
  • Functional association networks for disease gene prediction
  • 2017
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • Mapping of the human genome has been instrumental in understanding diseasescaused by changes in single genes. However, disease mechanisms involvingmultiple genes have proven to be much more elusive. Their complexityemerges from interactions of intracellular molecules and makes them immuneto the traditional reductionist approach. Only by modelling this complexinteraction pattern using networks is it possible to understand the emergentproperties that give rise to diseases.The overarching term used to describe both physical and indirect interactionsinvolved in the same functions is functional association. FunCoup is oneof the most comprehensive networks of functional association. It uses a naïveBayesian approach to integrate high-throughput experimental evidence of intracellularinteractions in humans and multiple model organisms. In the firstupdate, both the coverage and the quality of the interactions, were increasedand a feature for comparing interactions across species was added. The latestupdate involved a complete overhaul of all data sources, including a refinementof the training data and addition of new class and sources of interactionsas well as six new species.Disease-specific changes in genes can be identified using high-throughputgenome-wide studies of patients and healthy individuals. To understand theunderlying mechanisms that produce these changes, they can be mapped tocollections of genes with known functions, such as pathways. BinoX wasdeveloped to map altered genes to pathways using the topology of FunCoup.This approach combined with a new random model for comparison enables BinoXto outperform traditional gene-overlap-based methods and other networkbasedtechniques.Results from high-throughput experiments are challenged by noise and biases,resulting in many false positives. Statistical attempts to correct for thesechallenges have led to a reduction in coverage. Both limitations can be remediedusing prioritisation tools such as MaxLink, which ranks genes using guiltby association in the context of a functional association network. MaxLink’salgorithm was generalised to work with any disease phenotype and its statisticalfoundation was strengthened. MaxLink’s predictions were validatedexperimentally using FRET.The availability of prioritisation tools without an appropriate way to comparethem makes it difficult to select the correct tool for a problem domain.A benchmark to assess performance of prioritisation tools in terms of theirability to generalise to new data was developed. FunCoup was used for prioritisationwhile testing was done using cross-validation of terms derived fromGene Ontology. This resulted in a robust and unbiased benchmark for evaluationof current and future prioritisation tools. Surprisingly, previously superiortools based on global network structure were shown to be inferior to a localnetwork-based tool when performance was analysed on the most relevant partof the output, i.e. the top ranked genes.This thesis demonstrates how a network that models the intricate biologyof the cell can contribute with valuable insights for researchers that study diseaseswith complex genetic origins. The developed tools will help the researchcommunity to understand the underlying causes of such diseases and discovernew treatment targets. The robust way to benchmark such tools will help researchersto select the proper tool for their problem domain.
  •  
4.
  • Klionsky, Daniel J., et al. (författare)
  • Guidelines for the use and interpretation of assays for monitoring autophagy
  • 2012
  • Ingår i: Autophagy. - : Informa UK Limited. - 1554-8635 .- 1554-8627. ; 8:4, s. 445-544
  • Forskningsöversikt (refereegranskat)abstract
    • In 2008 we published the first set of guidelines for standardizing research in autophagy. Since then, research on this topic has continued to accelerate, and many new scientists have entered the field. Our knowledge base and relevant new technologies have also been expanding. Accordingly, it is important to update these guidelines for monitoring autophagy in different organisms. Various reviews have described the range of assays that have been used for this purpose. Nevertheless, there continues to be confusion regarding acceptable methods to measure autophagy, especially in multicellular eukaryotes. A key point that needs to be emphasized is that there is a difference between measurements that monitor the numbers or volume of autophagic elements (e.g., autophagosomes or autolysosomes) at any stage of the autophagic process vs. those that measure flux through the autophagy pathway (i.e., the complete process); thus, a block in macroautophagy that results in autophagosome accumulation needs to be differentiated from stimuli that result in increased autophagic activity, defined as increased autophagy induction coupled with increased delivery to, and degradation within, lysosomes (in most higher eukaryotes and some protists such as Dictyostelium) or the vacuole (in plants and fungi). In other words, it is especially important that investigators new to the field understand that the appearance of more autophagosomes does not necessarily equate with more autophagy. In fact, in many cases, autophagosomes accumulate because of a block in trafficking to lysosomes without a concomitant change in autophagosome biogenesis, whereas an increase in autolysosomes may reflect a reduction in degradative activity. Here, we present a set of guidelines for the selection and interpretation of methods for use by investigators who aim to examine macroautophagy and related processes, as well as for reviewers who need to provide realistic and reasonable critiques of papers that are focused on these processes. These guidelines are not meant to be a formulaic set of rules, because the appropriate assays depend in part on the question being asked and the system being used. In addition, we emphasize that no individual assay is guaranteed to be the most appropriate one in every situation, and we strongly recommend the use of multiple assays to monitor autophagy. In these guidelines, we consider these various methods of assessing autophagy and what information can, or cannot, be obtained from them. Finally, by discussing the merits and limits of particular autophagy assays, we hope to encourage technical innovation in the field.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-4 av 4
Typ av publikation
tidskriftsartikel (1)
konferensbidrag (1)
doktorsavhandling (1)
forskningsöversikt (1)
Typ av innehåll
övrigt vetenskapligt/konstnärligt (2)
refereegranskat (2)
Författare/redaktör
Cordier, Christophe (1)
Wang, Jin (1)
Wang, Mei (1)
Perola, Markus (1)
Strålfors, Peter (1)
Kominami, Eiki (1)
visa fler...
Salvesen, Guy (1)
Bonaldo, Paolo (1)
Minucci, Saverio (1)
De Milito, Angelo (1)
Agholme, Lotta (1)
Kågedal, Katarina (1)
Durbeej-Hjalt, Madel ... (1)
Liu, Wei (1)
Clarke, Robert (1)
Kumar, Ashok (1)
Brest, Patrick (1)
Simon, Hans-Uwe (1)
Mograbi, Baharia (1)
Brismar, Hjalmar, Pr ... (1)
Melino, Gerry (1)
Mysorekar, Indira (1)
Albert, Matthew L (1)
Zhu, Changlian, 1964 (1)
Lopez-Otin, Carlos (1)
Liu, Bo (1)
Ghavami, Saeid (1)
Harris, James (1)
Howard, Heidi (1)
Chen, Xi (1)
Wang, Ke (1)
Marchetti, Piero (1)
Simm, Jaak (1)
Zhang, Hong (1)
Zorzano, Antonio (1)
Moreau, Yves, Profes ... (1)
Bozhkov, Peter (1)
Fan, Jia (1)
Petersen, Morten (1)
Skulachev, Vladimir ... (1)
Gukovsky, Ilya (1)
Fujii, Jun (1)
Przyklenk, Karin (1)
Kumar, Raj (1)
Noda, Takeshi (1)
Zhao, Ying (1)
Perry, George (1)
Kampinga, Harm H. (1)
Engkvist, Ola, 1967 (1)
Zhang, Lin (1)
visa färre...
Lärosäte
Lunds universitet (2)
Chalmers tekniska högskola (2)
Göteborgs universitet (1)
Stockholms universitet (1)
Linköpings universitet (1)
Karolinska Institutet (1)
visa fler...
Sveriges Lantbruksuniversitet (1)
visa färre...
Språk
Engelska (4)
Forskningsämne (UKÄ/SCB)
Medicin och hälsovetenskap (2)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy