SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Mueller Myhsok Bertram) "

Sökning: WFRF:(Mueller Myhsok Bertram)

  • Resultat 1-10 av 14
  • [1]2Nästa
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Thompson, P. M., et al. (författare)
  • The ENIGMA Consortium : large-scale collaborative analyses of neuroimaging and genetic data
  • 2014
  • Ingår i: BRAIN IMAGING BEHAV. - 1931-7557. ; 8:2, s. 153-182
  • Tidskriftsartikel (refereegranskat)abstract
    • The Enhancing NeuroImaging Genetics through Meta-Analysis (ENIGMA) Consortium is a collaborative network of researchers working together on a range of large-scale studies that integrate data from 70 institutions worldwide. Organized into Working Groups that tackle questions in neuroscience, genetics, and medicine, ENIGMA studies have analyzed neuroimaging data from over 12,826 subjects. In addition, data from 12,171 individuals were provided by the CHARGE consortium for replication of findings, in a total of 24,997 subjects. By meta-analyzing results from many sites, ENIGMA has detected factors that affect the brain that no individual site could detect on its own, and that require larger numbers of subjects than any individual neuroimaging study has currently collected. ENIGMA's first project was a genome-wide association study identifying common variants in the genome associated with hippocampal volume or intracranial volume. Continuing work is exploring genetic associations with subcortical volumes (ENIGMA2) and white matter microstructure (ENIGMA-DTI). Working groups also focus on understanding how schizophrenia, bipolar illness, major depression and attention deficit/hyperactivity disorder (ADHD) affect the brain. We review the current progress of the ENIGMA Consortium, along with challenges and unexpected discoveries made on the way.
  •  
2.
  • Adams, Hieab H. H., et al. (författare)
  • Novel genetic loci underlying human intracranial volume identified through genome-wide association
  • 2016
  • Ingår i: Nature Neuroscience. - 1097-6256 .- 1546-1726. ; 19:12, s. 1569-1582
  • Tidskriftsartikel (refereegranskat)abstract
    • Intracranial volume reflects the maximally attained brain size during development, and remains stable with loss of tissue in late life. It is highly heritable, but the underlying genes remain largely undetermined. In a genome-wide association study of 32,438 adults, we discovered five previously unknown loci for intracranial volume and confirmed two known signals. Four of the loci were also associated with adult human stature, but these remained associated with intracranial volume after adjusting for height. We found a high genetic correlation with child head circumference (rho(genetic) = 0.748), which indicates a similar genetic background and allowed us to identify four additional loci through meta-analysis (N-combined = 37,345). Variants for intracranial volume were also related to childhood and adult cognitive function, and Parkinson's disease, and were enriched near genes involved in growth pathways, including PI3K-AKT signaling. These findings identify the biological underpinnings of intracranial volume and their link to physiological and pathological traits.
  •  
3.
  • Hibar, Derrek P., et al. (författare)
  • Common genetic variants influence human subcortical brain structures
  • 2015
  • Ingår i: Nature. - 0028-0836. ; 520:7546, s. 224-U216
  • Tidskriftsartikel (refereegranskat)abstract
    • The highly complex structure of the human brain is strongly shaped by genetic influences(1). Subcortical brain regions form circuits with cortical areas to coordinate movement(2), learning, memory(3) and motivation(4), and altered circuits can lead to abnormal behaviour and disease(5). To investigate how common genetic variants affect the structure of these brain regions, here we conduct genome-wide association studies of the volumes of seven subcortical regions and the intracranial volume derived from magnetic resonance images of 30,717 individuals from 50 cohorts. We identify five novel genetic variants influencing the volumes of the putamen and caudate nucleus. We also find stronger evidence for three loci with previously established influences on hippocampal volume(5) and intracranial volume(6). These variants show specific volumetric effects on brain structures rather than global effects across structures. The strongest effects were found for the putamen, where a novel intergenic locus with replicable influence on volume (rs945270; P = 1.08 X 10(-33); 0.52% variance explained) showed evidence of altering the expression of the KTN1 gene in both brain and blood tissue. Variants influencing putamen volume clustered near developmental genes that regulate apoptosis, axon guidance and vesicle transport. Identification of these genetic variants provides insight into the causes of variability in human brain development, and may help to determine mechanisms of neuropsychiatric dysfunction.
  •  
4.
  • Hibar, Derrek P., et al. (författare)
  • Novel genetic loci associated with hippocampal volume
  • 2017
  • Ingår i: Nature Communications. - 2041-1723 .- 2041-1723. ; 8
  • Tidskriftsartikel (refereegranskat)abstract
    • The hippocampal formation is a brain structure integrally involved in episodic memory, spatial navigation, cognition and stress responsiveness. Structural abnormalities in hippocampal volume and shape are found in several common neuropsychiatric disorders. To identify the genetic underpinnings of hippocampal structure here we perform a genome-wide association study (GWAS) of 33,536 individuals and discover six independent loci significantly associated with hippocampal volume, four of them novel. Of the novel loci, three lie within genes (ASTN2, DPP4 and MAST4) and one is found 200 kb upstream of SHH. A hippocampal subfield analysis shows that a locus within the MSRB3 gene shows evidence of a localized effect along the dentate gyrus, subiculum, CA1 and fissure. Further, we show that genetic variants associated with decreased hippocampal volume are also associated with increased risk for Alzheimer's disease (r(g) = -0.155). Our findings suggest novel biological pathways through which human genetic variation influences hippocampal volume and risk for neuropsychiatric illness.
5.
  • Mullins, Niamh, et al. (författare)
  • GWAS of Suicide Attempt in Psychiatric Disorders and Association With Major Depression Polygenic Risk Scores
  • 2019
  • Ingår i: American Journal of Psychiatry. - American Psychiatric Publishing. - 0002-953X. ; 176:8, s. 651-660
  • Tidskriftsartikel (refereegranskat)abstract
    • Objective: More than 90% of people who attempt suicide have a psychiatric diagnosis; however, twin and family studies suggest that the genetic etiology of suicide attempt is partially distinct from that of the psychiatric disorders themselves. The authors present the largest genome-wide association study (GWAS) on suicide attempt, using cohorts of individuals with major depressive disorder, bipolar disorder, and schizophrenia from the Psychiatric Genomics Consortium.Methods: The samples comprised 1,622 suicide attempters and 8,786 nonattempters with major depressive disorder; 3,264 attempters and 5,500 nonattempters with bipolar disorder; and 1,683 attempters and 2,946 nonattempters with schizophrenia. A GWAS on suicide attempt was performed by comparing attempters to nonattempters with each disorder, followed by a meta-analysis across disorders. Polygenic risk scoring was used to investigate the genetic relationship between suicide attempt and the psychiatric disorders.Results: Three genome-wide significant loci for suicide attempt were found: one associated with suicide attempt in major depressive disorder, one associated with suicide attempt in bipolar disorder, and one in the meta-analysis of suicide attempt in mood disorders. These associations were not replicated in independent mood disorder cohorts from the UK Biobank and iPSYCH. No significant associations were found in the meta-analysis of all three disorders. Polygenic risk scores for major depression were significantly associated with suicide attempt in major depressive disorder (R2=0.25%), bipolar disorder (R2=0.24%), and schizophrenia (R2=0.40%).Conclusions: This study provides new information on genetic associations and demonstrates that genetic liability for major depression increases risk for suicide attempt across psychiatric disorders. Further collaborative efforts to increase sample size may help to robustly identify genetic associations and provide biological insights into the etiology of suicide attempt.
  •  
6.
  • Musliner, Katherine L., et al. (författare)
  • Association of Polygenic Liabilities for Major Depression, Bipolar Disorder, and Schizophrenia With Risk for Depression in the Danish Population
  • 2019
  • Ingår i: JAMA psychiatry. - 2168-6238. ; 76:5, s. 516-525
  • Tidskriftsartikel (refereegranskat)abstract
    • IMPORTANCE: Although the usefulness of polygenic risk scores as a measure of genetic liability for major depression (MD) has been established, their association with depression in the general population remains relatively unexplored.OBJECTIVE: To evaluate whether polygenic risk scores for MD, bipolar disorder (BD), and schizophrenia (SZ) are associated with depression in the general population and explore whether these polygenic liabilities are associated with heterogeneity in terms of age at onset and severity at the initial depression diagnosis.DESIGN SETTING AND PARTICIPANTS: Participants were drawn from the Danish iPSYCH2012 case-cohort study, a representative sample drawn from the population of Denmark born between May 1, 1981, and December 31, 2005. The hazard of depression was estimated using Cox regressions modified to accommodate the case-cohort design. Case-only analyses were conducted using linear and multinomial regressions. The data analysis was conducted from February 2017 to June 2018.EXPOSURES: Polygenic risk scores for MD, BD, and SZ trained using the most recent genome-wide association study results from the Psychiatric Genomics Consortium.MAIN OUTCOMES AND MEASURES: The main outcome was first depressive episode (international Statistical Classification of Diseases and Related Health Problems, Tenth Revision [ICD-10] code F32) treated in hospital-based psychiatric care. Severity at the initial diagnosis was measured using the ICD-10 code severity specifications (mild, moderate, severe without psychosis, and severe with psychosis) and treatment setting (inpatient, outpatient, and emergency).RESULTS: Of 34 573 participants aged 10 to 31 years at censoring, 68% of those with depression were female compared with 48.9% of participants without depression. Each SD increase in polygenic liability for MD, BD, and SZ was associated with 30% (hazard ratio [HR], 1.30; 95% CI, 1.27-1.33), 5% (HR, 1.05; 95% CI, 1.02-1.07), and 12% (HR, 1.12; 95% CI, 1.09-1.15) increases in the hazard of depression, respectively. Among cases, a higher polygenic liability for BD was associated with earlier depression onset (beta =-.07; SE =.02; P =.002).CONCLUSIONS AND RELEVANCE: Polygenic ability for MD is associated with first depress on in the general population, which supports the idea that these scores tap into an underlying liability for developing the disorder. The fact that polygenic risk for BD and polygenic risk for SZ also were associated with depression is consistent with prior evidence that these disorders share some common genetic overlap. Variations in polygenic liability may contribute slightly to heterogeneity in clinical presentation, but these associations appear minimal.
  •  
7.
  • Ripke, Stephan, et al. (författare)
  • Biological insights from 108 schizophrenia-associated genetic loci
  • 2014
  • Ingår i: Nature. - 0028-0836. ; 511:7510, s. 421-427
  • Tidskriftsartikel (refereegranskat)abstract
    • Schizophrenia is a highly heritable disorder. Genetic risk is conferred by a large number of alleles, including common alleles of small effect that might be detected by genome-wide association studies. Here we report a multi-stage schizophrenia genome-wide association study of up to 36,989 cases and 113,075 controls. We identify 128 independent associations spanning 108 conservatively defined loci that meet genome-wide significance, 83 of which have not been previously reported. Associations were enriched among genes expressed in brain, providing biological plausibility for the findings. Many findings have the potential to provide entirely new insights into aetiology, but associations at DRD2 and several genes involved in glutamatergic neurotransmission highlight molecules of known and potential therapeutic relevance to schizophrenia, and are consistent with leading pathophysiological hypotheses. Independent of genes expressed in brain, associations were enriched among genes expressed in tissues that have important roles in immunity, providing support for the speculated link between the immune system and schizophrenia.
  •  
8.
  • Satizabal, Claudia L., et al. (författare)
  • Genetic architecture of subcortical brain structures in 38,851 individuals
  • 2019
  • Ingår i: Nature Genetics. - 1061-4036 .- 1546-1718. ; 51:11, s. 1624-
  • Tidskriftsartikel (refereegranskat)abstract
    • Subcortical brain structures are integral to motion, consciousness, emotions and learning. We identified common genetic variation related to the volumes of the nucleus accumbens, amygdala, brainstem, caudate nucleus, globus pallidus, putamen and thalamus, using genome-wide association analyses in almost 40,000 individuals from CHARGE, ENIGMA and UK Biobank. We show that variability in subcortical volumes is heritable, and identify 48 significantly associated loci (40 novel at the time of analysis). Annotation of these loci by utilizing gene expression, methylation and neuropathological data identified 199 genes putatively implicated in neurodevelopment, synaptic signaling, axonal transport, apoptosis, inflammation/infection and susceptibility to neurological disorders. This set of genes is significantly enriched for Drosophila orthologs associated with neurodevelopmental phenotypes, suggesting evolutionarily conserved mechanisms. Our findings uncover novel biology and potential drug targets underlying brain development and disease.
  •  
9.
  • Siddiq, Afshan, et al. (författare)
  • A meta-analysis of genome-wide association studies of breast cancer identifies two novel susceptibility loci at 6q14 and 20q11
  • 2012
  • Ingår i: Human Molecular Genetics. - 0964-6906. ; 21:24, s. 5373-5384
  • Tidskriftsartikel (refereegranskat)abstract
    • Genome-wide association studies (GWAS) of breast cancer defined by hormone receptor status have revealed loci contributing to susceptibility of estrogen receptor (ER)-negative subtypes. To identify additional genetic variants for ER-negative breast cancer, we conducted the largest meta-analysis of ER-negative disease to date, comprising 4754 ER-negative cases and 31 663 controls from three GWAS: NCI Breast and Prostate Cancer Cohort Consortium (BPC3) (2188 ER-negative cases; 25 519 controls of European ancestry), Triple Negative Breast Cancer Consortium (TNBCC) (1562 triple negative cases; 3399 controls of European ancestry) and African American Breast Cancer Consortium (AABC) (1004 ER-negative cases; 2745 controls). We performed in silico replication of 86 SNPs at P 1 10(-5) in an additional 11 209 breast cancer cases (946 with ER-negative disease) and 16 057 controls of Japanese, Latino and European ancestry. We identified two novel loci for breast cancer at 20q11 and 6q14. SNP rs2284378 at 20q11 was associated with ER-negative breast cancer (combined two-stage OR 1.16; P 1.1 10(8)) but showed a weaker association with overall breast cancer (OR 1.08, P 1.3 10(6)) based on 17 869 cases and 43 745 controls and no association with ER-positive disease (OR 1.01, P 0.67) based on 9965 cases and 22 902 controls. Similarly, rs17530068 at 6q14 was associated with breast cancer (OR 1.12; P 1.1 10(9)), and with both ER-positive (OR 1.09; P 1.5 10(5)) and ER-negative (OR 1.16, P 2.5 10(7)) disease. We also confirmed three known loci associated with ER-negative (19p13) and both ER-negative and ER-positive breast cancer (6q25 and 12p11). Our results highlight the value of large-scale collaborative studies to identify novel breast cancer risk loci.
  •  
10.
  • Bellenguez, Celine, et al. (författare)
  • Genome-wide association study identifies a variant in HDAC9 associated with large vessel ischemic stroke
  • 2012
  • Ingår i: Nature Genetics. - Nature Publishing Group. - 1546-1718. ; 44:3, s. 141-328
  • Tidskriftsartikel (refereegranskat)abstract
    • Genetic factors have been implicated in stroke risk, but few replicated associations have been reported. We conducted a genome-wide association study (GWAS) for ischemic stroke and its subtypes in 3,548 affected individuals and 5,972 controls, all of European ancestry. Replication of potential signals was performed in 5,859 affected individuals and 6,281 controls. We replicated previous associations for cardioembolic stroke near PITX2 and ZFHX3 and for large vessel stroke at a 9p21 locus. We identified a new association for large vessel stroke within HDAC9 (encoding histone deacetylase 9) on chromosome 7p21.1 (including further replication in an additional 735 affected individuals and 28,583 controls) (rs11984041; combined P = 1.87 x 10(-11); odds ratio (OR) = 1.42, 95% confidence interval (CI) = 1.28-1.57). All four loci exhibited evidence for heterogeneity of effect across the stroke subtypes, with some and possibly all affecting risk for only one subtype. This suggests distinct genetic architectures for different stroke subtypes.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 14
  • [1]2Nästa
Åtkomst
fritt online (2)
Typ av publikation
tidskriftsartikel (13)
forskningsöversikt (1)
Typ av innehåll
refereegranskat (13)
övrigt vetenskapligt (1)
Författare/redaktör
Mattheisen, Manuel, (8)
Agartz, Ingrid, (8)
Andreassen, Ole A., (8)
Lee, Phil H., (7)
Milaneschi, Yuri, (7)
Teumer, Alexander, (6)
visa fler...
Boomsma, Dorret I., (6)
Franke, Barbara, (5)
Hibar, Derrek P., (5)
Stein, Jason L., (5)
Renteria, Miguel E., (5)
Jahanshad, Neda, (5)
Alhusaini, Saud, (5)
Armstrong, Nicola J. ... (5)
Bralten, Janita, (5)
Chakravarty, M. Mall ... (5)
Ching, Christopher R ... (5)
Den Braber, Anouk, (5)
Ehrlich, Stefan, (5)
Giddaluru, Sudheer, (5)
Grimm, Oliver, (5)
Guadalupe, Tulio, (5)
Haukvik, Unn K., (5)
Hoehn, David, (5)
Holmes, Avram J., (5)
Hoogman, Martine, (5)
Kasperaviciute, Dali ... (5)
Kim, Sungeun, (5)
Kraemer, Bernd, (5)
Luciano, Michelle, (5)
Matarin, Mar, (5)
Mather, Karen A., (5)
Nho, Kwangsik, (5)
Loohuis, Loes M. Old ... (5)
Papmeyer, Martina, (5)
Puetz, Benno, (5)
Risacher, Shannon L. ... (5)
Roiz-Santianez, Robe ... (5)
Saemann, Philipp G., (5)
Schmaal, Lianne, (5)
Schork, Andrew J., (5)
Shen, Li, (5)
Toro, Roberto, (5)
Westlye, Lars T., (5)
Whelan, Christopher ... (5)
Wolf, Christiane, (5)
Zwiers, Marcel P., (5)
Bastin, Mark E., (5)
Brouwer, Rachel M., (5)
Brunner, Han G., (5)
visa färre...
Lärosäte
Umeå universitet (10)
Karolinska Institutet (10)
Uppsala universitet (4)
Stockholms universitet (3)
Göteborgs universitet (2)
Lunds universitet (2)
Språk
Engelska (14)
Forskningsämne (UKÄ/SCB)
Medicin och hälsovetenskap (14)
Naturvetenskap (2)
Samhällsvetenskap (1)

År

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy