SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Muller B) ;mspu:(chapter)"

Sökning: WFRF:(Muller B) > Bokkapitel

  • Resultat 1-3 av 3
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Berg, Roger, et al. (författare)
  • Time-resolved tranillumination imaging
  • 1993
  • Ingår i: Medical Optical Tomography: Functional Imaging and Monitoring. ; , s. 397-424
  • Bokkapitel (refereegranskat)
  •  
2.
  • Andresen, Louise C., 1974, et al. (författare)
  • Shifting Impacts of Climate Change: Long-Term Patterns of Plant Response to Elevated CO2, Drought, and Warming Across Ecosystems
  • 2016
  • Ingår i: Large-Scale Ecology: Model Systems to Global Perspectives. - : Elsevier. - 9780081009352 ; , s. 437-473
  • Bokkapitel (refereegranskat)abstract
    • Field experiments that expose terrestrial ecosystems to climate change factors by manipulations are expensive to maintain, and typically only last a few years. Plant biomass is commonly used to assess responses to climate treatments and to predict climate change impacts. However, response to the treatments might be considerably different between the early years and a decade later. The aim of this data analysis was to develop and apply a method for evaluating changes in plant biomass responses through time, in order to provide a firm basis for discussing how the ‘short-term’ response might differ from the ‘long-term’ response. Across 22 sites situated in the northern hemisphere, which covered three continents, and multiple ecosystems (grasslands, shrublands, moorlands, forests, and deserts), we evaluated biomass datasets from long-term experiments with exposure to elevated CO2 (eCO2), warming, or drought. We developed methods for assessing biomass response patterns to the manipulations using polynomial and linear (piecewise) model analysis and linked the responses to sitespecific variables such as temperature and rainfall. Polynomial patterns across sites indicated changes in response direction over time under eCO2, warming, and drought. In addition, five distinct pattern types were confirmed within sites: ‘no response’, ‘delayed response’, ‘directional response’, ‘dampening response’, and ‘altered response’ patterns. We found that biomass response direction was as likely to change over time as it was to be consistent, and therefore suggest that climate manipulation experiments should be carried out over timescales covering both short- and long-term responses, in order to realistically assess future impacts of climate change.
  •  
3.
  • Dyson, M., et al. (författare)
  • Structure/Property/Processing Relationships for Organic Solar Cells
  • 2018
  • Ingår i: RSC Nanoscience and Nanotechnology. - : The Royal Society of Chemistry. - 1757-7136. - 9781782626749 ; 2018-January:45, s. 182-225
  • Bokkapitel (övrigt vetenskapligt/konstnärligt)abstract
    • Rapid developments in the field of organic solar cells have been driven by this technology's potentially advantageous traits: the environmentally friendly, low-cost generation of energy with the possibility of large area manufacturing of flexible, lightweight, semi-transparent devices, with predicted low energy payback times. Major step changes leading to vastly improved devices with ever-increasing performance have been achieved through new insights into materials design and an improved understanding of the often complex microstructure and phase morphology of organic solar cell systems. This chapter summarises the advances in synthesis, concentrating on the relevant structure/property relations and how the chemical structure affects processing and the microstructure. This is followed by a detailed discussion of classical materials science approaches that assist in gaining insights into complex materials systems, such as organic solar cell blends from the molecular to the micrometre scale, with a focus on polymer-based systems and how to apply this knowledge to future larger area processing of organic photovoltaic architectures.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-3 av 3

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy