SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Muller L) ;lar1:(ri)"

Sökning: WFRF:(Muller L) > RISE

  • Resultat 1-4 av 4
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Merlone, A., et al. (författare)
  • The MeteoMet project - metrology for meteorology: challenges and results
  • 2015
  • Ingår i: Meteorological Applications. - : Wiley. - 1350-4827 .- 1469-8080. ; 22, s. 820-829
  • Tidskriftsartikel (refereegranskat)abstract
    • The study describes significant outcomes of the Metrology for Meteorology' project, MeteoMet, which is an attempt to bridge the meteorological and metrological communities. The concept of traceability, an idea used in both fields but with a subtle difference in meaning, is at the heart of the project. For meteorology, a traceable measurement is the one that can be traced back to a particular instrument, time and location. From a metrological perspective, traceability further implies that the measurement can be traced back to a primary realization of the quantity being measured in terms of the base units of the International System of Units, the SI. These two perspectives reflect long-standing differences in culture and practice and this project - and this study - represents only the first step towards better communication between the two communities. The 3 year MeteoMet project was funded by the European Metrology Research Program (EMRP) and involved 18 European National Metrological Institutes, 3 universities and 35 collaborating stakeholders including national meteorology organizations, research institutes, universities, associations and instrument companies. The project brought a metrological perspective to several long-standing measurement problems in meteorology and climatology, varying from conventional ground-based measurements to those made in the upper atmosphere. It included development and testing of novel instrumentation as well as improved calibration procedures and facilities, instrument intercomparison under realistic conditions and best practice dissemination. Additionally, the validation of historical temperature data series with respect to measurement uncertainties and a methodology for recalculation of the values were included.
  •  
2.
  • Hegedüs, Z., et al. (författare)
  • Imaging modalities at the Swedish Materials Science beamline at PETRA III
  • 2019
  • Ingår i: IOP Conference Series. - : Institute of Physics Publishing.
  • Konferensbidrag (refereegranskat)abstract
    • High-energy synchrotron radiation has been demonstrated to be a powerful tool for materials characterization. The development of novel methodologies is still ongoing, driven by major technological advances regarding the available source brilliance and efficient large area detectors. The Swedish Materials Science beamline at PETRA III is dedicated to materials characterization by high-energy X-rays and scheduled to enter into user operation starting August 2019. The beamline has been designed in particular for the combination of two complementary techniques: wide and small angle scattering and imaging. The beamline design is presented briefly and the different techniques are reviewed with regard to the contrast mechanisms and the ability to obtain spatially resolved information.
  •  
3.
  • Michel, M., et al. (författare)
  • Small-molecule activation of OGG1 increases oxidative DNA damage repair by gaining a new function
  • 2022
  • Ingår i: Science. - Stockholm : American Association for the Advancement of Science. - 0036-8075 .- 1095-9203. ; 376:6600, s. 1471-1476
  • Tidskriftsartikel (refereegranskat)abstract
    • Oxidative DNA damage is recognized by 8-oxoguanine (8-oxoG) DNA glycosylase 1 (OGG1), which excises 8-oxoG, leaving a substrate for apurinic endonuclease 1 (APE1) and initiating repair. Here, we describe a small molecule (TH10785) that interacts with the phenylalanine-319 and glycine-42 amino acids of OGG1, increases the enzyme activity 10-fold, and generates a previously undescribed b,d-lyase enzymatic function. TH10785 controls the catalytic activity mediated by a nitrogen base within its molecular structure. In cells, TH10785 increases OGG1 recruitment to and repair of oxidative DNA damage. This alters the repair process, which no longer requires APE1 but instead is dependent on polynucleotide kinase phosphatase (PNKP1) activity. The increased repair of oxidative DNA lesions with a small molecule may have therapeutic applications in various diseases and aging. © 2022 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works
  •  
4.
  • Sefidari, Hamid, et al. (författare)
  • The effect of co-firing coal and woody biomass upon the slagging/deposition tendency in iron-ore pelletizing grate-kiln plants
  • 2020
  • Ingår i: Fuel processing technology. - : Elsevier B.V.. - 0378-3820 .- 1873-7188. ; 199
  • Tidskriftsartikel (refereegranskat)abstract
    • Woody biomass is being considered a potential co-firing fuel to reduce coal consumption in iron-ore pelletizing rotary kilns. An important consideration is the slagging inside the kiln caused by ash deposition that can lead to process disturbances or shutdowns. In terms of ash chemistry, co-firing woody biomass implies the addition of mainly Ca and K to the Si- and Al-dominated coal-ash (characteristic of high-rank coals) and Fe from the iron-ore that are both inherent to the process. An alkali-laden gaseous atmosphere is also present due to the accumulation of alkali via the recirculation of flue gas in the system. The slagging propensity of blending woody biomass with coal in the grate-kiln process was studied based on the viscosity of the molten phases predicted by global thermochemical equilibrium modeling. This was carried out for variations in temperature, gaseous KOH atmosphere, and fuel blending levels. Results were evaluated and compared using a qualitative slagging indicator previously proposed by the authors where an inverse relationship between deposition tendency and the viscosity of the molten fraction of the ash was established. The results were also compared with a set of co-firing experiments performed in a pilot-scale (0.4 MW) experimental combustion furnace. In general, the co-firing of woody biomass would likely increase the slagging tendency via the increased formation of low-viscosity melts. The fluxing behavior of biomass-ash potentially reduces the viscosity of the Fe-rich aluminosilicate melt and intensifies deposition. However, the results also revealed that there are certain conditions where deposition tendency may decrease via the formation of high-melting-point alkali-containing solid phases (e.g., leucite). 
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-4 av 4

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy