SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Mwinyi Jessica) ;pers:(Bandstein Marcus)"

Search: WFRF:(Mwinyi Jessica) > Bandstein Marcus

  • Result 1-6 of 6
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Bandstein, Marcus, 1988-, et al. (author)
  • A genetic risk score is associated with weight loss following Roux-Y gastric bypass surgery
  • 2016
  • In: Obesity Surgery. - : Springer Science and Business Media LLC. - 0960-8923 .- 1708-0428. ; 26:9, s. 2183-2189
  • Journal article (peer-reviewed)abstract
    • Currently, Roux-en Y gastric bypass (RYGB) is the most efficient therapy for severe obesity. Weight loss after surgery is, however, highly variable and genetically influenced. Genome-wide association studies have identified several single nucleotide polymorphisms (SNP) associated with body mass index (BMI) and waist-hip ratio (WHR). We aimed to identify two genetic risk scores (GRS) composed of weighted BMI and WHR-associated SNPs to estimate their impact on excess BMI loss (EBMIL) after RYGB surgery. Two hundred and thirty-eight obese patients (BMI 45.1 +/- 6.2 kg/m(2), 74 % women), who underwent RYGB, were genotyped for 35 BMI and WHR-associated SNPs and were followed up after 2 years. SNPs with high impact on post-surgical weight loss were filtered out using a random forest model. The filtered SNPs were combined into a GRS and analyzed in a linear regression model. An up to 11 % lower EBMIL with higher risk score was estimated for two GRS models (P = 0.026 resp. P = 0.021) composed of seven BMI-associated SNPs (closest genes: MC4R, TMEM160, PTBP2, NUDT3, TFAP2B, ZNF608, MAP2K5, GNPDA2, and MTCH2) and of three WHR-associated SNPs (closest genes: HOXC13, LYPLAL1, and DNM3-PIGC). Patients within the lowest GRS quartile had higher EBMIL compared to patients within the other three quartiles in both models. We identified two GRSs composed of BMI and WHR-associated SNPs with significant impact on weight loss after RYGB surgery using random forest analysis as a SNP selection tool. The GRS may be useful to pre-surgically evaluate the risks for patients undergoing RYGB surgery.
  •  
2.
  • Bandstein, Marcus, 1988-, et al. (author)
  • A genetic variant in proximity to the gene LYPLAL1 is associated with lower hunger feelings and increased weight loss following Roux-en Y gastric bypass surgery
  • 2016
  • In: Scandinavian Journal of Gastroenterology. - : Informa UK Limited. - 0036-5521 .- 1502-7708. ; 51:9, s. 1050-1055
  • Journal article (peer-reviewed)abstract
    • Objective: Bariatric surgery is the most efficient treatment of severe obesity. We investigated to what extent BMI- or waist-hip ratio (WHR)-related genetic variants are associated with excess BMI loss (EBMIL) two years after Roux-en-Y gastric bypass (RYGB) surgery, and elucidated the affected biological pathways.Methods: Two-hundred fifty-one obese patients (age: 4310.7, preoperative BMI: 45.16.1kg/m(2), 186 women) underwent RYGB surgery and were followed up after two years with regard to BMI. Patients were genotyped for 32 single-nucleotide polymorphisms (SNPs) that were investigated with regard to their impact on response to RYGB and preoperatively measured Three Factor Eating Questionnaire (TFEQ) scores.Results: Homozygous T carriers of the SNP rs4846567 in proximity to the Lysophospholipase-like 1 (LYPLAL1) gene showed a 7% higher EBMIL compared to wild-type and heterozygous carriers (p=0.031). TT-allele carriers showed furthermore lower scores for Hunger (74%, p<0.001), lower Disinhibition (53%, p<0.001), and higher Cognitive restraint (21%, p=0.017) than GG/GT carriers in the TFEQ. Patients within the lowest quartile of Hunger scores had a 32% greater EBMIL compared to patients in the highest quartile (p<0.001).Conclusion: The LYPLAL1 genotype is associated with differences in eating behavior and loss of extensive body weight following RYGB surgery. Genotyping and the use of eating behavior-related questionnaires may help to estimate the RYGB-associated therapy success.
  •  
3.
  • Boström, Adrian, et al. (author)
  • Hypermethylation-associated downregulation of microRNA-4456 in hypersexual disorder with putative influence on oxytocin signalling : A DNA methylation analysis of miRNA genes
  • 2020
  • In: Epigenetics. - : Taylor & Francis. - 1559-2294 .- 1559-2308. ; 15:1-2, s. 145-160
  • Journal article (peer-reviewed)abstract
    • Hypersexual disorder (HD) was proposed as a diagnosis in the DSM-5 and the classification ‘Compulsive Sexual Behavior Disorder’ is now presented as an impulse-control disorder in ICD-11. HD incorporates several pathophysiological mechanisms; including impulsivity, compulsivity, sexual desire dysregulation and sexual addiction. No previous study investigated HD in a methylation analysis limited to microRNA (miRNA) associated CpG-sites. The genome wide methylation pattern was measured in whole blood from 60 subjects with HD and 33 healthy volunteers using the Illumina EPIC BeadChip. 8,852 miRNA associated CpG-sites were investigated in multiple linear regression analyses of methylation M-values to a binary independent variable of disease state (HD or healthy volunteer), adjusting for optimally determined covariates. Expression levels of candidate miRNAs were investigated in the same individuals for differential expression analysis. Candidate methylation loci were further studied for an association with alcohol dependence in an independent cohort of 107 subjects. Two CpG-sites were borderline significant in HD – cg18222192 (MIR708)(p < 10E-05,pFDR = 5.81E-02) and cg01299774 (MIR4456)(p < 10E-06, pFDR = 5.81E-02). MIR4456 was significantly lower expressed in HD in both univariate (p < 0.0001) and multivariate (p < 0.05) analyses. Cg01299774 methylation levels were inversely correlated with expression levels of MIR4456 (p < 0.01) and were also differentially methylated in alcohol dependence (p = 0.026). Gene target prediction and pathway analysis revealed that MIR4456 putatively targets genes preferentially expressed in brain and that are involved in major neuronal molecular mechanisms thought to be relevant for HD, e.g., the oxytocin signalling pathway. In summary, our study implicates a potential contribution of MIR4456 in the pathophysiology of HD by putatively influencing oxytocin signalling.
  •  
4.
  • Ciuculete, Diana-Maria, et al. (author)
  • A genetic risk score is significantly associated with statin therapy response in the elderly population
  • 2017
  • In: Clinical Genetics. - : Wiley. - 0009-9163 .- 1399-0004. ; 91:3, s. 379-385
  • Journal article (peer-reviewed)abstract
    • The ability of statins to strongly reduce low-density lipoprotein cholesterol (LDL-C) varies interindividually and is partially influenced by genetic variants. Based on a comprehensive analysis of 23 single nucleotide polymorphisms (SNPs) known to be associated with pharmacokinetics and dynamics of statins, we developed a genetic risk score to study its impact on the therapy outcome in elderly individuals under at least 5 years statin therapy. The study was performed in a population-based cohort of 1016 elderly individuals, which comprised 168 statin users investigated at age 75 and 80. Using random forest models, the major variants influencing LDL-C levels were summarized in a weighted GRS (wGRS). The wGRS was tested with lipid and glucose outcomes and validated in an independent population-based cohort including 221 statin users. Four SNPs within the APOE cluster (rs7412, rs4420638), ABCC2 (rs2002042) and CELSR/SORT1/PSRC1 (rs646776), displayed a major impact on statin efficacy. The wGRS was significantly associated with lower LDL-C at age 75 and 80. This association was replicated displaying similar results. GRS analysis is a powerful tool to evaluate the additive effects of genetic variants on statin response and to estimate the magnitude of LDL-C reduction to a considerable extent in the older population.
  •  
5.
  • Ciuculete, Diana-Maria, et al. (author)
  • A methylome-wide mQTL analysis reveals associations of methylation sites with GAD1 and HDAC3 SNPs and a general psychiatric risk score
  • 2017
  • In: Translational Psychiatry. - : NATURE PUBLISHING GROUP. - 2158-3188. ; 7
  • Journal article (peer-reviewed)abstract
    • Genome-wide association studies have identified a number of single-nucleotide polymorphisms (SNPs) that are associated with psychiatric diseases. Increasing body of evidence suggests a complex connection of SNPs and the transcriptional and epigenetic regulation of gene expression, which is poorly understood. In the current study, we investigated the interplay between genetic risk variants, shifts in methylation and mRNA levels in whole blood from 223 adolescents distinguished by a risk for developing psychiatric disorders. We analyzed 37 SNPs previously associated with psychiatric diseases in relation to genome-wide DNA methylation levels using linear models, with Bonferroni correction and adjusting for cell-type composition. Associations between DNA methylation, mRNA levels and psychiatric disease risk evaluated by the Development and Well-Being Assessment (DAWBA) score were identified by robust linear models, Pearson's correlations and binary regression models. We detected five SNPs (in HCRTR1, GAD1, HADC3 and FKBP5) that were associated with eight CpG sites, validating five of these SNP-CpG pairs. Three of these CpG sites, that is, cg01089319 (GAD1), cg01089249 (GAD1) and cg24137543 (DIAPH1), manifest in significant gene expression changes and overlap with active regulatory regions in chromatin states of brain tissues. Importantly, methylation levels at cg01089319 were associated with the DAWBA score in the discovery group. These results show how distinct SNPs linked with psychiatric diseases are associated with epigenetic shifts with relevance for gene expression. Our findings give a novel insight on how genetic variants may modulate risks for the development of psychiatric diseases.
  •  
6.
  • Kanders, Sofia H., et al. (author)
  • A pharmacogenetic risk score for the evaluation of major depression severity under treatment with antidepressants
  • 2020
  • In: Drug development research. - : John Wiley & Sons. - 0272-4391 .- 1098-2299. ; 81:1, s. 102-113
  • Journal article (peer-reviewed)abstract
    • The severity of symptoms as well as efficacy of antidepressants in major depressive disorder (MDD) is modified by single nucleotide polymorphisms (SNPs) in different genes, which may contribute in an additive or synergistic fashion. We aimed to investigate depression severity in participants with MDD under treatment with antidepressants in relation to the combinatory effect of selected genetic variants combined using a genetic risk score (GRS). The sample included 150 MDD patients on regular AD therapy from the population‐based Swiss PsyCoLaus cohort. We investigated 44 SNPs previously associated with antidepressant response by ranking them with regard to their association to the Center for Epidemiologic Studies Short Depression Scale (CES‐D) score using random forest. The three top scoring SNPs (rs12248560, rs878567, rs17710780) were subsequently combined into an unweighted GRS, which was included in linear and logistic regression models using the CES‐D score, occurrence of a major depressive episode (MDE) during follow‐up and regular antidepressant treatment during the 6 months preceding follow‐up assessment as outcomes. The GRS was associated with MDE occurrence (p = .02) and ln CES‐D score (p = .001). The HTR1A rs878567 variant was associated with ln CES‐D after adjustment for demographic and clinical variables [p = .02, lower scores for minor allele (G) carriers]. Additionally, rs12248560 (CYP2C19 ) CC homozygotes showed a six‐fold higher likelihood of regular AD therapy at follow‐up compared to minor allele homozygotes [TT; ultrarapid metabolizers (p = .03)]. Our study suggests that the cumulative consideration of pharmacogenetic risk variants more reliably reflects the impact of the genetic background on depression severity than individual SNPs.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-6 of 6

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view