SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Myers Richard M.) "

Sökning: WFRF:(Myers Richard M.)

  • Resultat 1-10 av 39
  • [1]234Nästa
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Stahl, Eli A, et al. (författare)
  • Genome-wide association study identifies 30 loci associated with bipolar disorder
  • 2019
  • Ingår i: Nature genetics. - 1546-1718. ; 51:5, s. 793-
  • Tidskriftsartikel (refereegranskat)abstract
    • Bipolar disorder is a highly heritable psychiatric disorder. We performed a genome-wide association study (GWAS) including 20,352 cases and 31,358 controls of European descent, with follow-up analysis of 822 variants with P < 1 × 10-4 in an additional 9,412 cases and 137,760 controls. Eight of the 19 variants that were genome-wide significant (P < 5 × 10-8) in the discovery GWAS were not genome-wide significant in the combined analysis, consistent with small effect sizes and limited power but also with genetic heterogeneity. In the combined analysis, 30 loci were genome-wide significant, including 20 newly identified loci. The significant loci contain genes encoding ion channels, neurotransmitter transporters and synaptic components. Pathway analysis revealed nine significantly enriched gene sets, including regulation of insulin secretion and endocannabinoid signaling. Bipolar I disorder is strongly genetically correlated with schizophrenia, driven by psychosis, whereas bipolar II disorder is more strongly correlated with major depressive disorder. These findings address key clinical questions and provide potential biological mechanisms for bipolar disorder.
  •  
2.
  • Lee, S. Hong, et al. (författare)
  • Genetic relationship between five psychiatric disorders estimated from genome-wide SNPs
  • 2013
  • Ingår i: Nature genetics. - 1546-1718. ; 45:9, s. 984-
  • Tidskriftsartikel (refereegranskat)abstract
    • Most psychiatric disorders are moderately to highly heritable. The degree to which genetic variation is unique to individual disorders or shared across disorders is unclear. To examine shared genetic etiology, we use genome-wide genotype data from the Psychiatric Genomics Consortium (PGC) for cases and controls in schizophrenia, bipolar disorder, major depressive disorder, autism spectrum disorders (ASD) and attention-deficit/hyperactivity disorder (ADHD). We apply univariate and bivariate methods for the estimation of genetic variation within and covariation between disorders. SNPs explained 17-29% of the variance in liability. The genetic correlation calculated using common SNPs was high between schizophrenia and bipolar disorder (0.68 ± 0.04 s.e.), moderate between schizophrenia and major depressive disorder (0.43 ± 0.06 s.e.), bipolar disorder and major depressive disorder (0.47 ± 0.06 s.e.), and ADHD and major depressive disorder (0.32 ± 0.07 s.e.), low between schizophrenia and ASD (0.16 ± 0.06 s.e.) and non-significant for other pairs of disorders as well as between psychiatric disorders and the negative control of Crohn's disease. This empirical evidence of shared genetic etiology for psychiatric disorders can inform nosology and encourages the investigation of common pathophysiologies for related disorders. © 2013 Nature America, Inc. All rights reserved.
  •  
3.
  • de Jong, Simone, et al. (författare)
  • Applying polygenic risk scoring for psychiatric disorders to a large family with bipolar disorder and major depressive disorder
  • 2018
  • Ingår i: Communications Biology. - Nature Publishing Group. - 2399-3642. ; 1
  • Tidskriftsartikel (refereegranskat)abstract
    • <p>Psychiatric disorders are thought to have a complex genetic pathology consisting of interplay of common and rare variation. Traditionally, pedigrees are used to shed light on the latter only, while here we discuss the application of polygenic risk scores to also highlight patterns of common genetic risk. We analyze polygenic risk scores for psychiatric disorders in a large pedigree (<em>n</em> ~ 260) in which 30% of family members suffer from major depressive disorder or bipolar disorder. Studying patterns of assortative mating and anticipation, it appears increased polygenic risk is contributed by affected individuals who married into the family, resulting in an increasing genetic risk over generations. This may explain the observation of anticipation in mood disorders, whereby onset is earlier and the severity increases over the generations of a family. Joint analyses of rare and common variation may be a powerful way to understand the familial genetics of psychiatric disorders.</p>
  •  
4.
  • Stahl, Eli A., et al. (författare)
  • Genome-wide association study identifies 30 loci associated with bipolar disorder
  • 2019
  • Ingår i: Nature Genetics. - 1061-4036 .- 1546-1718. ; 51:5, s. 793-803
  • Tidskriftsartikel (refereegranskat)abstract
    • <p>Bipolar disorder is a highly heritable psychiatric disorder. We performed a genome-wide association study (GWAS) including 20,352 cases and 31,358 controls of European descent, with follow-up analysis of 822 variants with P &lt; 1 × 10<sup>-4</sup> in an additional 9,412 cases and 137,760 controls. Eight of the 19 variants that were genome-wide significant (P &lt; 5 × 10<sup>-8</sup>) in the discovery GWAS were not genome-wide significant in the combined analysis, consistent with small effect sizes and limited power but also with genetic heterogeneity. In the combined analysis, 30 loci were genome-wide significant, including 20 newly identified loci. The significant loci contain genes encoding ion channels, neurotransmitter transporters and synaptic components. Pathway analysis revealed nine significantly enriched gene sets, including regulation of insulin secretion and endocannabinoid signaling. Bipolar I disorder is strongly genetically correlated with schizophrenia, driven by psychosis, whereas bipolar II disorder is more strongly correlated with major depressive disorder. These findings address key clinical questions and provide potential biological mechanisms for bipolar disorder.</p>
  •  
5.
  • Joshi, Peter K, et al. (författare)
  • Directional dominance on stature and cognition in diverse human populations
  • 2015
  • Ingår i: Nature. - 0028-0836 .- 1476-4687. ; 523:7561, s. 459-462
  • Tidskriftsartikel (refereegranskat)abstract
    • <p>Homozygosity has long been associated with rare, often devastating, Mendelian disorders, and Darwin was one of the first to recognize that inbreeding reduces evolutionary fitness. However, the effect of the more distant parental relatedness that is common in modern human populations is less well understood. Genomic data now allow us to investigate the effects of homozygosity on traits of public health importance by observing contiguous homozygous segments (runs of homozygosity), which are inferred to be homozygous along their complete length. Given the low levels of genome-wide homozygosity prevalent in most human populations, information is required on very large numbers of people to provide sufficient power. Here we use runs of homozygosity to study 16 health-related quantitative traits in 354,224 individuals from 102 cohorts, and find statistically significant associations between summed runs of homozygosity and four complex traits: height, forced expiratory lung volume in one second, general cognitive ability and educational attainment (P &lt; 1 × 10(-300), 2.1 × 10(-6), 2.5 × 10(-10) and 1.8 × 10(-10), respectively). In each case, increased homozygosity was associated with decreased trait value, equivalent to the offspring of first cousins being 1.2 cm shorter and having 10 months' less education. Similar effect sizes were found across four continental groups and populations with different degrees of genome-wide homozygosity, providing evidence that homozygosity, rather than confounding, directly contributes to phenotypic variance. Contrary to earlier reports in substantially smaller samples, no evidence was seen of an influence of genome-wide homozygosity on blood pressure and low density lipoprotein cholesterol, or ten other cardio-metabolic traits. Since directional dominance is predicted for traits under directional evolutionary selection, this study provides evidence that increased stature and cognitive function have been positively selected in human evolution, whereas many important risk factors for late-onset complex diseases may not have been.</p>
  •  
6.
  • Birney, Ewan, et al. (författare)
  • Identification and analysis of functional elements in 1% of the human genome by the ENCODE pilot project
  • 2007
  • Ingår i: Nature. - 1476-4687. ; 447:7146, s. 799-816
  • Tidskriftsartikel (refereegranskat)abstract
    • <p>We report the generation and analysis of functional data from multiple, diverse experiments performed on a targeted 1% of the human genome as part of the pilot phase of the ENCODE Project. These data have been further integrated and augmented by a number of evolutionary and computational analyses. Together, our results advance the collective knowledge about human genome function in several major areas. First, our studies provide convincing evidence that the genome is pervasively transcribed, such that the majority of its bases can be found in primary transcripts, including non-protein-coding transcripts, and those that extensively overlap one another. Second, systematic examination of transcriptional regulation has yielded new understanding about transcription start sites, including their relationship to specific regulatory sequences and features of chromatin accessibility and histone modification. Third, a more sophisticated view of chromatin structure has emerged, including its inter-relationship with DNA replication and transcriptional regulation. Finally, integration of these new sources of information, in particular with respect to mammalian evolution based on inter- and intra-species sequence comparisons, has yielded new mechanistic and evolutionary insights concerning the functional landscape of the human genome. Together, these studies are defining a path for pursuit of a more comprehensive characterization of human genome function.</p>
  •  
7.
  • Birney, Ewan, et al. (författare)
  • Identification and analysis of functional elements in 1% of the human genome by the ENCODE pilot project
  • 2007
  • Ingår i: Nature. - 0028-0836 .- 1476-4687. ; 447:7146, s. 799-816
  • Tidskriftsartikel (refereegranskat)abstract
    • <p>We report the generation and analysis of functional data from multiple, diverse experiments performed on a targeted 1% of the human genome as part of the pilot phase of the ENCODE Project. These data have been further integrated and augmented by a number of evolutionary and computational analyses. Together, our results advance the collective knowledge about human genome function in several major areas. First, our studies provide convincing evidence that the genome is pervasively transcribed, such that the majority of its bases can be found in primary transcripts, including non-protein-coding transcripts, and those that extensively overlap one another. Second, systematic examination of transcriptional regulation has yielded new understanding about transcription start sites, including their relationship to specific regulatory sequences and features of chromatin accessibility and histone modification. Third, a more sophisticated view of chromatin structure has emerged, including its inter-relationship with DNA replication and transcriptional regulation. Finally, integration of these new sources of information, in particular with respect to mammalian evolution based on inter- and intra-species sequence comparisons, has yielded new mechanistic and evolutionary insights concerning the functional landscape of the human genome. Together, these studies are defining a path for pursuit of a more comprehensive characterization of human genome function.</p>
  •  
8.
  • Speliotes, Elizabeth K., et al. (författare)
  • Association analyses of 249,796 individuals reveal 18 new loci associated with body mass index
  • 2010
  • Ingår i: Nature Genetics. - Nature Publishing Group. - 1546-1718. ; 42:11, s. 53-937
  • Tidskriftsartikel (refereegranskat)abstract
    • Obesity is globally prevalent and highly heritable, but its underlying genetic factors remain largely elusive. To identify genetic loci for obesity susceptibility, we examined associations between body mass index and similar to 2.8 million SNPs in up to 123,865 individuals with targeted follow up of 42 SNPs in up to 125,931 additional individuals. We confirmed 14 known obesity susceptibility loci and identified 18 new loci associated with body mass index (P < 5 x 10(-8)), one of which includes a copy number variant near GPRC5B. Some loci (at MC4R, POMC, SH2B1 and BDNF) map near key hypothalamic regulators of energy balance, and one of these loci is near GIPR, an incretin receptor. Furthermore, genes in other newly associated loci may provide new insights into human body weight regulation.
  •  
9.
  • Speliotes, Elizabeth K., et al. (författare)
  • Association analyses of 249,796 individuals reveal 18 new loci associated with body mass index
  • 2010
  • Ingår i: Nature Genetics. - 1061-4036 .- 1546-1718. ; 42:11, s. 937-948
  • Tidskriftsartikel (refereegranskat)abstract
    • <p>Obesity is globally prevalent and highly heritable, but its underlying genetic factors remain largely elusive. To identify genetic loci for obesity susceptibility, we examined associations between body mass index and ~2.8 million SNPs in up to 123,865 individuals with targeted follow up of 42 SNPs in up to 125,931 additional individuals. We confirmed 14 known obesity susceptibility loci and identified 18 new loci associated with body mass index (<em>P</em> &lt; 5 × 10<sup>−8</sup>), one of which includes a copy number variant near <em>GPRC5B.</em> Some loci (at <em>MC4R</em>, <em>POMC</em>, <em>SH2B1</em> and <em>BDNF</em>) map near key hypothalamic regulators of energy balance, and one of these loci is near <em>GIPR</em>, an incretin receptor. Furthermore, genes in other newly associated loci may provide new insights into human body weight regulation.</p>
  •  
10.
  • Craddock, Nick, et al. (författare)
  • Genome-wide association study of CNVs in 16,000 cases of eight common diseases and 3,000 shared controls
  • 2010
  • Ingår i: Nature. - 0028-0836 .- 1476-4687. ; 464:7289, s. 713-720
  • Tidskriftsartikel (refereegranskat)abstract
    • <p>Copy number variants (CNVs) account for a major proportion of human genetic polymorphism and have been predicted to have an important role in genetic susceptibility to common disease. To address this we undertook a large, direct genome-wide study of association between CNVs and eight common human diseases. Using a purpose-designed array we typed,19,000 individuals into distinct copy-number classes at 3,432 polymorphic CNVs, including an estimated similar to 50% of all common CNVs larger than 500 base pairs. We identified several biological artefacts that lead to false-positive associations, including systematic CNV differences between DNAs derived from blood and cell lines. Association testing and follow-up replication analyses confirmed three loci where CNVs were associated with disease-IRGM for Crohn's disease, HLA for Crohn's disease, rheumatoid arthritis and type 1 diabetes, and TSPAN8 for type 2 diabetes-although in each case the locus had previously been identified in single nucleotide polymorphism (SNP)-based studies, reflecting our observation that most common CNVs that are well-typed on our array are well tagged by SNPs and so have been indirectly explored through SNP studies. We conclude that common CNVs that can be typed on existing platforms are unlikely to contribute greatly to the genetic basis of common human diseases.</p>
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 39
  • [1]234Nästa
Åtkomst
fritt online (5)
Typ av publikation
tidskriftsartikel (37)
forskningsöversikt (2)
Typ av innehåll
refereegranskat (39)
övrigt vetenskapligt (2)
Författare/redaktör
Harris, Tamara B. (12)
Amin, Najaf (11)
Gudnason, Vilmundur (10)
Hofman, Albert (10)
Van Duijn, Cornelia ... (10)
Launer, Lenore J. (9)
visa fler...
Boerwinkle, Eric (9)
Smith, Albert V. (8)
Foroud, Tatiana M. (8)
Ikram, M. Arfan (8)
Clarke, Robert, (8)
Eiriksdottir, Gudny (8)
Seshadri, Sudha (7)
Hardy, John (7)
Noethen, Markus M. (7)
Psaty, Bruce M. (7)
Rotter, Jerome I. (7)
Schmidt, Reinhold (7)
Schmidt, Helena (7)
Boada, Mercè, (6)
Tsolaki, Magda (6)
Pasquier, Florence (6)
Powell, John F. (6)
Lannfelt, Lars, (6)
Ingelsson, Martin, (6)
Chouraki, Vincent (6)
Bis, Joshua C. (6)
Amouyel, Philippe (6)
Bennett, David A. (6)
De Jager, Philip L. (6)
DeStefano, Anita L. (6)
Lopez, Oscar L. (6)
Lovestone, Simon (6)
Mecocci, Patrizia (6)
Montgomery, Grant W. (6)
Tzourio, Christophe (6)
Vardarajan, Badri N. (6)
Martin, Nicholas G. (6)
Fratiglioni, Laura, (6)
Ramirez, Alfredo, (6)
Boehnke, Michael (6)
Hiltunen, Mikko (6)
Van Broeckhoven, Chr ... (6)
Wood, Andrew R. (6)
Esko, Tonu (6)
Morris, Andrew P. (6)
Collins, Francis S. (6)
Metspalu, Andres (6)
Lindgren, Cecilia M. (6)
Lathrop, Mark (6)
visa färre...
Lärosäte
Uppsala universitet (13)
Lunds universitet (12)
Karolinska Institutet (8)
Göteborgs universitet (6)
Umeå universitet (5)
Stockholms universitet (3)
visa fler...
Kungliga Tekniska Högskolan (2)
Ersta Sköndal Bräcke högskola (1)
visa färre...
Språk
Engelska (39)
Forskningsämne (UKÄ/SCB)
Medicin och hälsovetenskap (32)
Naturvetenskap (8)

År

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy