SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Nan Hongmei) ;pers:(Joshi Amit D.)"

Sökning: WFRF:(Nan Hongmei) > Joshi Amit D.

  • Resultat 1-5 av 5
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Aglago, Elom K., et al. (författare)
  • A Genetic Locus within the FMN1/GREM1 Gene Region Interacts with Body Mass Index in Colorectal Cancer Risk
  • 2023
  • Ingår i: Cancer Research. - : American Association For Cancer Research (AACR). - 0008-5472 .- 1538-7445. ; 83:15, s. 2572-2583
  • Tidskriftsartikel (refereegranskat)abstract
    • Colorectal cancer risk can be impacted by genetic, environmental, and lifestyle factors, including diet and obesity. Gene-environment interactions (G × E) can provide biological insights into the effects of obesity on colorectal cancer risk. Here, we assessed potential genome-wide G × E interactions between body mass index (BMI) and common SNPs for colorectal cancer risk using data from 36,415 colorectal cancer cases and 48,451 controls from three international colorectal cancer consortia (CCFR, CORECT, and GECCO). The G × E tests included the conventional logistic regression using multiplicative terms (one degree of freedom, 1DF test), the two-step EDGE method, and the joint 3DF test, each of which is powerful for detecting G × E interactions under specific conditions. BMI was associated with higher colorectal cancer risk. The two-step approach revealed a statistically significant G×BMI interaction located within the Formin 1/Gremlin 1 (FMN1/GREM1) gene region (rs58349661). This SNP was also identified by the 3DF test, with a suggestive statistical significance in the 1DF test. Among participants with the CC genotype of rs58349661, overweight and obesity categories were associated with higher colorectal cancer risk, whereas null associations were observed across BMI categories in those with the TT genotype. Using data from three large international consortia, this study discovered a locus in the FMN1/GREM1 gene region that interacts with BMI on the association with colorectal cancer risk. Further studies should examine the potential mechanisms through which this locus modifies the etiologic link between obesity and colorectal cancer.SIGNIFICANCE: This gene-environment interaction analysis revealed a genetic locus in FMN1/GREM1 that interacts with body mass index in colorectal cancer risk, suggesting potential implications for precision prevention strategies.
  •  
2.
  • McNabb, Sarah, et al. (författare)
  • Meta-analysis of 16 studies of the association of alcohol with colorectal cancer
  • 2020
  • Ingår i: International Journal of Cancer. - : Wiley. - 0020-7136 .- 1097-0215. ; 146:3, s. 861-873
  • Tidskriftsartikel (refereegranskat)abstract
    • Alcohol consumption is an established risk factor for colorectal cancer (CRC). However, while studies have consistently reported elevated risk of CRC among heavy drinkers, associations at moderate levels of alcohol consumption are less clear. We conducted a combined analysis of 16 studies of CRC to examine the shape of the alcohol-CRC association, investigate potential effect modifiers of the association, and examine differential effects of alcohol consumption by cancer anatomic site and stage. We collected information on alcohol consumption for 14,276 CRC cases and 15,802 controls from 5 case-control and 11 nested case-control studies of CRC. We compared adjusted logistic regression models with linear and restricted cubic splines to select a model that best fit the association between alcohol consumption and CRC. Study-specific results were pooled using fixed-effects meta-analysis. Compared to non-/occasional drinking (<= 1 g/day), light/moderate drinking (up to 2 drinks/day) was associated with a decreased risk of CRC (odds ratio [OR]: 0.92, 95% confidence interval [CI]: 0.88-0.98, p = 0.005), heavy drinking (2-3 drinks/day) was not significantly associated with CRC risk (OR: 1.11, 95% CI: 0.99-1.24, p = 0.08) and very heavy drinking (more than 3 drinks/day) was associated with a significant increased risk (OR: 1.25, 95% CI: 1.11-1.40, p < 0.001). We observed no evidence of interactions with lifestyle risk factors or of differences by cancer site or stage. These results provide further evidence that there is a J-shaped association between alcohol consumption and CRC risk. This overall pattern was not significantly modified by other CRC risk factors and there was no effect heterogeneity by tumor site or stage.
  •  
3.
  • Tian, Yu, et al. (författare)
  • Genetic risk impacts the association of menopausal hormone therapy with colorectal cancer risk
  • 2024
  • Ingår i: British Journal of Cancer. - : Springer Nature. - 0007-0920 .- 1532-1827. ; 130:10, s. 1687-1696
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Menopausal hormone therapy (MHT), a common treatment to relieve symptoms of menopause, is associated with a lower risk of colorectal cancer (CRC). To inform CRC risk prediction and MHT risk-benefit assessment, we aimed to evaluate the joint association of a polygenic risk score (PRS) for CRC and MHT on CRC risk.Methods: We used data from 28,486 postmenopausal women (11,519 cases and 16,967 controls) of European descent. A PRS based on 141 CRC-associated genetic variants was modeled as a categorical variable in quartiles. Multiplicative interaction between PRS and MHT use was evaluated using logistic regression. Additive interaction was measured using the relative excess risk due to interaction (RERI). 30-year cumulative risks of CRC for 50-year-old women according to MHT use and PRS were calculated.Results: The reduction in odds ratios by MHT use was larger in women within the highest quartile of PRS compared to that in women within the lowest quartile of PRS (p-value = 2.7 × 10−8). At the highest quartile of PRS, the 30-year CRC risk was statistically significantly lower for women taking any MHT than for women not taking any MHT, 3.7% (3.3%–4.0%) vs 6.1% (5.7%–6.5%) (difference 2.4%, P-value = 1.83 × 10−14); these differences were also statistically significant but smaller in magnitude in the lowest PRS quartile, 1.6% (1.4%–1.8%) vs 2.2% (1.9%–2.4%) (difference 0.6%, P-value = 1.01 × 10−3), indicating 4 times greater reduction in absolute risk associated with any MHT use in the highest compared to the lowest quartile of genetic CRC risk.Conclusions: MHT use has a greater impact on the reduction of CRC risk for women at higher genetic risk. These findings have implications for the development of risk prediction models for CRC and potentially for the consideration of genetic information in the risk-benefit assessment of MHT use.
  •  
4.
  • Tian, Yu, et al. (författare)
  • Genome-Wide Interaction Analysis of Genetic Variants With Menopausal Hormone Therapy for Colorectal Cancer Risk
  • 2022
  • Ingår i: Journal of the National Cancer Institute. - : Oxford University Press. - 0027-8874 .- 1460-2105. ; 114:8, s. 1135-1148
  • Tidskriftsartikel (refereegranskat)abstract
    • BACKGROUND: The use of menopausal hormone therapy (MHT) may interact with genetic variants to influence colorectal cancer (CRC) risk. METHODS: We conducted a genome-wide, gene-environment interaction between single nucleotide polymorphisms and the use of any MHT, estrogen only, and combined estrogen-progestogen therapy with CRC risk, among 28 486 postmenopausal women (11 519 CRC patients and 16 967 participants without CRC) from 38 studies, using logistic regression, 2-step method, and 2- or 3-degree-of-freedom joint test. A set-based score test was applied for rare genetic variants. RESULTS: The use of any MHT, estrogen only and estrogen-progestogen were associated with a reduced CRC risk (odds ratio [OR] = 0.71, 95% confidence interval [CI] = 0.64 to 0.78; OR = 0.65, 95% CI = 0.53 to 0.79; and OR = 0.73, 95% CI = 0.59 to 0.90, respectively). The 2-step method identified a statistically significant interaction between a GRIN2B variant rs117868593 and MHT use, whereby MHT-associated CRC risk was statistically significantly reduced in women with the GG genotype (OR = 0.68, 95% CI = 0.64 to 0.72) but not within strata of GC or CC genotypes. A statistically significant interaction between a DCBLD1 intronic variant at 6q22.1 (rs10782186) and MHT use was identified by the 2-degree-of-freedom joint test. The MHT-associated CRC risk was reduced with increasing number of rs10782186-C alleles, showing odds ratios of 0.78 (95% CI = 0.70 to 0.87) for TT, 0.68 (95% CI = 0.63 to 0.73) for TC, and 0.66 (95% CI = 0.60 to 0.74) for CC genotypes. In addition, 5 genes in rare variant analysis showed suggestive interactions with MHT (2-sided P < 1.2 × 10-4). CONCLUSION: Genetic variants that modify the association between MHT and CRC risk were identified, offering new insights into pathways of CRC carcinogenesis and potential mechanisms involved.
  •  
5.
  • Xia, Zhiyu, et al. (författare)
  • Functional informed genome-wide interaction analysis of body mass index, diabetes and colorectal cancer risk.
  • 2020
  • Ingår i: Cancer Medicine. - : Wiley. - 2045-7634. ; 9:10, s. 3563-3573
  • Tidskriftsartikel (refereegranskat)abstract
    • BACKGROUND: Body mass index (BMI) and diabetes are established risk factors for colorectal cancer (CRC), likely through perturbations in metabolic traits (e.g. insulin resistance and glucose homeostasis). Identification of interactions between variation in genes and these metabolic risk factors may identify novel biologic insights into CRC etiology.METHODS: To improve statistical power and interpretation for gene-environment interaction (G × E) testing, we tested genetic variants that regulate expression of a gene together for interaction with BMI (kg/m2 ) and diabetes on CRC risk among 26 017 cases and 20 692 controls. Each variant was weighted based on PrediXcan analysis of gene expression data from colon tissue generated in the Genotype-Tissue Expression Project for all genes with heritability ≥1%. We used a mixed-effects model to jointly measure the G × E interaction in a gene by partitioning the interactions into the predicted gene expression levels (fixed effects), and residual G × E effects (random effects). G × BMI analyses were stratified by sex as BMI-CRC associations differ by sex. We used false discovery rates to account for multiple comparisons and reported all results with FDR <0.2.RESULTS: Among 4839 genes tested, genetically predicted expressions of FOXA1 (P = 3.15 × 10-5 ), PSMC5 (P = 4.51 × 10-4 ) and CD33 (P = 2.71 × 10-4 ) modified the association of BMI on CRC risk for men; KIAA0753 (P = 2.29 × 10-5 ) and SCN1B (P = 2.76 × 10-4 ) modified the association of BMI on CRC risk for women; and PTPN2 modified the association between diabetes and CRC risk in both sexes (P = 2.31 × 10-5 ).CONCLUSIONS: Aggregating G × E interactions and incorporating functional information, we discovered novel genes that may interact with BMI and diabetes on CRC risk.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-5 av 5

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy