SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Nano Jana) "

Search: WFRF:(Nano Jana)

  • Result 1-5 of 5
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Ma, Jiantao, et al. (author)
  • A Peripheral Blood DNA Methylation Signature of Hepatic Fat Reveals a Potential Causal Pathway for Nonalcoholic Fatty Liver Disease
  • 2019
  • In: Diabetes. - : AMER DIABETES ASSOC. - 0012-1797 .- 1939-327X. ; 68:5, s. 1073-1083
  • Journal article (peer-reviewed)abstract
    • Nonalcoholic fatty liver disease (NAFLD) is a risk factor for type 2 diabetes (T2D). We aimed to identify the peripheral blood DNA methylation signature of hepatic fat. We conducted epigenome-wide association studies of hepatic fat in 3,400 European ancestry (EA) participants and in 401 Hispanic ancestry and 724 African ancestry participants from four population-based cohort studies. Hepatic fat was measured using computed tomography or ultrasound imaging and DNA methylation was assessed at >400,000 cytosine-guanine dinucleotides (CpGs) in whole blood or CD14+ monocytes using a commercial array. We identified 22 CpGs associated with hepatic fat in EA participants at a false discovery rate <0.05 (corresponding P = 6.9 x 10(-6)) with replication at Bonferroni-corrected P < 8.6 x 10(-4). Mendelian randomization analyses supported the association of hypomethylation of cg08309687 (LINC00649) with NAFLD (P = 2.5 x 10(-4)). Hypomethylation of the same CpG was also associated with risk for new-onset T2D (P = 0.005). Our study demonstrates that a peripheral blood-derived DNA methylation signature is robustly associated with hepatic fat accumulation. The hepatic fat-associated CpGs may represent attractive biomarkers for T2D. Future studies are warranted to explore mechanisms and to examine DNA methylation signatures of NAFLD across racial/ethnic groups.
  •  
2.
  • Mahajan, Anubha, et al. (author)
  • Fine-mapping type 2 diabetes loci to single-variant resolution using high-density imputation and islet-specific epigenome maps
  • 2018
  • In: Nature Genetics. - : NATURE PUBLISHING GROUP. - 1061-4036 .- 1546-1718. ; 50:11, s. 1505-
  • Journal article (peer-reviewed)abstract
    • We expanded GWAS discovery for type 2 diabetes (T2D) by combining data from 898,130 European-descent individuals (9% cases), after imputation to high-density reference panels. With these data, we (i) extend the inventory of T2D-risk variants (243 loci,135 newly implicated in T2D predisposition, comprising 403 distinct association signals); (ii) enrich discovery of lower-frequency risk alleles (80 index variants with minor allele frequency <5%,14 with estimated allelic odds ratio >2); (iii) substantially improve fine-mapping of causal variants (at 51 signals, one variant accounted for >80% posterior probability of association (PPA)); (iv) extend fine-mapping through integration of tissue-specific epigenomic information (islet regulatory annotations extend the number of variants with PPA >80% to 73); (v) highlight validated therapeutic targets (18 genes with associations attributable to coding variants); and (vi) demonstrate enhanced potential for clinical translation (genome-wide chip heritability explains 18% of T2D risk; individuals in the extremes of a T2D polygenic risk score differ more than ninefold in prevalence).
  •  
3.
  • Mahajan, Anubha, et al. (author)
  • Multi-ancestry genetic study of type 2 diabetes highlights the power of diverse populations for discovery and translation
  • 2022
  • In: Nature Genetics. - : Springer Nature. - 1061-4036 .- 1546-1718. ; 54:5, s. 560-572
  • Journal article (peer-reviewed)abstract
    • We assembled an ancestrally diverse collection of genome-wide association studies (GWAS) of type 2 diabetes (T2D) in 180,834 affected individuals and 1,159,055 controls (48.9% non-European descent) through the Diabetes Meta-Analysis of Trans-Ethnic association studies (DIAMANTE) Consortium. Multi-ancestry GWAS meta-analysis identified 237 loci attaining stringent genome-wide significance (P < 5 x 10(-9)), which were delineated to 338 distinct association signals. Fine-mapping of these signals was enhanced by the increased sample size and expanded population diversity of the multi-ancestry meta-analysis, which localized 54.4% of T2D associations to a single variant with >50% posterior probability. This improved fine-mapping enabled systematic assessment of candidate causal genes and molecular mechanisms through which T2D associations are mediated, laying the foundations for functional investigations. Multi-ancestry genetic risk scores enhanced transferability of T2D prediction across diverse populations. Our study provides a step toward more effective clinical translation of T2D GWAS to improve global health for all, irrespective of genetic background. Genome-wide association and fine-mapping analyses in ancestrally diverse populations implicate candidate causal genes and mechanisms underlying type 2 diabetes. Trans-ancestry genetic risk scores enhance transferability across populations.
  •  
4.
  • Parmar, Priyanka, et al. (author)
  • Association of maternal prenatal smoking GFI1-locus and cardiometabolic phenotypes in 18,212 adults
  • 2018
  • In: EBioMedicine. - : Elsevier BV. - 2352-3964. ; 38, s. 206-216
  • Journal article (peer-reviewed)abstract
    • Background: DNA methylation at the GFI1-locus has been repeatedly associated with exposure to smoking from the foetal period onwards. We explored whether DNA methylation may be a mechanism that links exposure to maternal prenatal smoking with offspring's adult cardio-metabolic health. Methods: We meta-analysed the association between DNA methylation at GFI1-locus with maternal prenatal smoking, adult own smoking, and cardio-metabolic phenotypes in 22 population-based studies from Europe, Australia, and USA (n= 18,212). DNA methylation at the GFI1-locus was measured in whole-blood. Multivariable regression models were fitted to examine its association with exposure to prenatal and own adult smoking. DNA methylation levels were analysed in relation to body mass index (BMI), waist circumference (WC), fasting glucose (FG), high-density lipoprotein cholesterol (HDL-C), triglycerides (TG), diastolic, and systolic blood pressure (BP). Findings: Lower DNA methylation at three out of eight GFI1-CpGs was associated with exposure to maternal prenatal smoking, whereas, all eight CpGs were associated with adult own smoking. Lower DNA methylation at cg14179389, the strongest maternal prenatal smoking locus, was associated with increased WC and BP when adjusted for sex, age, and adult smoking with Bonferroni-corrected P < 0.012. In contrast, lower DNA methylation at cg09935388, the strongest adult own smoking locus, was associated with decreased BMI, WC, and BP (adjusted 1 x 10(-7) < P < 0.01). Similarly, lower DNA methylation at cg12876356, cg18316974, cg09662411, and cg18146737 was associated with decreased BMI and WC (5 x 10(-8) < P < 0.001). Lower DNA methylation at all the CpGs was consistently associated with higher TG levels. Interpretation: Epigenetic changes at the GFI1 were linked to smoking exposure in-utero/in-adulthood and robustly associated with cardio-metabolic risk factors. Fund: European Union's Horizon 2020 research and innovation programme under grant agreement no. 633595 DynaHEALTH.
  •  
5.
  • Aad, G., et al. (author)
  • 2011
  • swepub:Mat__t (peer-reviewed)
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-5 of 5

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view