SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Naukkarinen Jussi) "

Sökning: WFRF:(Naukkarinen Jussi)

  • Resultat 1-4 av 4
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Laurila, Pirkka-Pekka, et al. (författare)
  • Genomic, transcriptomic, and lipidomic profiling highlights the role of inflammation in individuals with low high-density lipoprotein cholesterol
  • 2013
  • Ingår i: Arteriosclerosis, Thrombosis and Vascular Biology. - : Lippincott Williams & Wilkins. - 1079-5642 .- 1524-4636. ; 33:4, s. 847-857
  • Tidskriftsartikel (refereegranskat)abstract
    • OBJECTIVE: Low high-density lipoprotein cholesterol (HDL-C) is associated with cardiometabolic pathologies. In this study, we investigate the biological pathways and individual genes behind low HDL-C by integrating results from 3 high-throughput data sources: adipose tissue transcriptomics, HDL lipidomics, and dense marker genotypes from Finnish individuals with low or high HDL-C (n=450).APPROACH AND RESULTS: In the pathway analysis of genetic data, we demonstrate that genetic variants within inflammatory pathways were enriched among low HDL-C associated single-nucleotide polymorphisms, and the expression of these pathways upregulated in the adipose tissue of low HDL-C subjects. The lipidomic analysis highlighted the change in HDL particle quality toward putatively more inflammatory and less vasoprotective state in subjects with low HDL-C, as evidenced by their decreased antioxidative plasmalogen contents. We show that the focal point of these inflammatory pathways seems to be the HLA region with its low HDL-associated alleles also associating with more abundant local transcript levels in adipose tissue, increased plasma vascular cell adhesion molecule 1 (VCAM1) levels, and decreased HDL particle plasmalogen contents, markers of adipose tissue inflammation, vascular inflammation, and HDL antioxidative potential, respectively. In a population-based look-up of the inflammatory pathway single-nucleotide polymorphisms in a large Finnish cohorts (n=11 211), no association of the HLA region was detected for HDL-C as quantitative trait, but with extreme HDL-C phenotypes, implying the presence of low or high HDL genes in addition to the population-genomewide association studies-identified HDL genes.CONCLUSIONS: Our study highlights the role of inflammation with a genetic component in subjects with low HDL-C and identifies novel cis-expression quantitative trait loci (cis-eQTL) variants in HLA region to be associated with low HDL-C.
  •  
2.
  • Naukkarinen, Jussi, et al. (författare)
  • Functional Variant Disrupts Insulin Induction of USF1 Mechanism for USF1-Associated Dyslipidemias
  • 2009
  • Ingår i: Circulation: Cardiovascular Genetics. - 1942-325X. ; 2:5, s. 245-522
  • Tidskriftsartikel (refereegranskat)abstract
    • Background-The upstream transcription factor 1 (USF1) gene is associated with familial combined hyperlipidemia, the most common genetic dyslipidemia in humans, as well as with various dyslipidemic changes in numerous other studies. Typical of complex disease-associated genes, neither the explicit mutations have been described nor the functional consequences for risk allele carriers been reported at the cellular or tissue level. Methods and Results-In this study, we aimed at describing the molecular mechanism through which the strongest associating intronic single-nucleotide polymorphism variant in USF1 is involved in the development of dyslipidemia. The effects of the risk variant on gene expression were studied in 2 relevant human tissues, fat and muscle. Global transcript profiles of 47 fat biopsies ascertained for carriership of the risk allele were tested for differential expression of known USF1 target genes as well as for broader effects on the transcript profile. Allelic imbalance of USF1 in fat was assessed using a quantitative sequencing approach. The possible allele-specific effect of insulin on the expression of USF1 was studied in 118 muscle biopsies before and after a euglycemic hyperinsulinemic clamp. The risk allele of single-nucleotide polymorphism rs2073658 seems to eradicate the inductive effect of insulin on the expression of USF1 in muscle and fat. The expression of numerous target genes is in turn perturbed in adipose tissue. Conclusions-In risk allele carriers, a defective response of USF1 to insulin results in the suboptimal response of relevant target genes that contributes to the enhanced risk of developing dyslipidemia and coronary heart disease. (Circ Cardiovasc Genet. 2009;2:522-529.)
  •  
3.
  • Pietiläinen, Kirsi H, et al. (författare)
  • Association of lipidome remodeling in the adipocyte membrane with acquired obesity in humans
  • 2011
  • Ingår i: PLoS biology. - : Public Library of Science. - 1544-9173 .- 1545-7885. ; 9:6
  • Tidskriftsartikel (refereegranskat)abstract
    • Identification of early mechanisms that may lead from obesity towards complications such as metabolic syndrome is of great interest. Here we performed lipidomic analyses of adipose tissue in twin pairs discordant for obesity but still metabolically compensated. In parallel we studied more evolved states of obesity by investigating a separated set of individuals considered to be morbidly obese. Despite lower dietary polyunsaturated fatty acid intake, the obese twin individuals had increased proportions of palmitoleic and arachidonic acids in their adipose tissue, including increased levels of ethanolamine plasmalogens containing arachidonic acid. Information gathered from these experimental groups was used for molecular dynamics simulations of lipid bilayers combined with dependency network analysis of combined clinical, lipidomics, and gene expression data. The simulations suggested that the observed lipid remodeling maintains the biophysical properties of lipid membranes, at the price, however, of increasing their vulnerability to inflammation. Conversely, in morbidly obese subjects, the proportion of plasmalogens containing arachidonic acid in the adipose tissue was markedly decreased. We also show by in vitro Elovl6 knockdown that the lipid network regulating the observed remodeling may be amenable to genetic modulation. Together, our novel approach suggests a physiological mechanism by which adaptation of adipocyte membranes to adipose tissue expansion associates with positive energy balance, potentially leading to higher vulnerability to inflammation in acquired obesity. Further studies will be needed to determine the cause of this effect.
  •  
4.
  • Pietiläinen, Kirsi H., et al. (författare)
  • Global transcript profiles of fat in monozygotic twins discordant for BMI : pathways behind acquired obesity
  • 2008
  • Ingår i: PLoS Medicine. - : Public Library of Science (PLoS). - 1549-1277 .- 1549-1676. ; 5:3
  • Tidskriftsartikel (refereegranskat)abstract
    • BACKGROUND: The acquired component of complex traits is difficult to dissect in humans. Obesity represents such a trait, in which the metabolic and molecular consequences emerge from complex interactions of genes and environment. With the substantial morbidity associated with obesity, a deeper understanding of the concurrent metabolic changes is of considerable importance. The goal of this study was to investigate this important acquired component and expose obesity-induced changes in biological pathways in an identical genetic background.METHODS AND FINDINGS: We used a special study design of "clonal controls," rare monozygotic twins discordant for obesity identified through a national registry of 2,453 young, healthy twin pairs. A total of 14 pairs were studied (eight male, six female; white), with a mean +/- standard deviation (SD) age 25.8 +/- 1.4 y and a body mass index (BMI) difference 5.2 +/- 1.8 kg/m(2). Sequence analyses of mitochondrial DNA (mtDNA) in subcutaneous fat and peripheral leukocytes revealed no aberrant heteroplasmy between the co-twins. However, mtDNA copy number was reduced by 47% in the obese co-twin's fat. In addition, novel pathway analyses of the adipose tissue transcription profiles exposed significant down-regulation of mitochondrial branched-chain amino acid (BCAA) catabolism (p < 0.0001). In line with this finding, serum levels of insulin secretion-enhancing BCAAs were increased in obese male co-twins (9% increase, p = 0.025). Lending clinical relevance to the findings, in both sexes the observed aberrations in mitochondrial amino acid metabolism pathways in fat correlated closely with liver fat accumulation, insulin resistance, and hyperinsulinemia, early aberrations of acquired obesity in these healthy young adults.CONCLUSIONS: Our findings emphasize a substantial role of mitochondrial energy- and amino acid metabolism in obesity and development of insulin resistance.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-4 av 4

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy