SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Nava Caroline) "

Sökning: WFRF:(Nava Caroline)

  • Resultat 1-10 av 11
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Depienne, Christel, et al. (författare)
  • Genetic and phenotypic dissection of 1q43q44 microdeletion syndrome and neurodevelopmental phenotypes associated with mutations in ZBTB18 and HNRNPU
  • 2017
  • Ingår i: Human Genetics. - : Springer Science and Business Media LLC. - 0340-6717 .- 1432-1203. ; 136:4, s. 463-479
  • Tidskriftsartikel (refereegranskat)abstract
    • Subtelomeric 1q43q44 microdeletions cause a syndrome associating intellectual disability, microcephaly, seizures and anomalies of the corpus callosum. Despite several previous studies assessing genotype-phenotype correlations, the contribution of genes located in this region to the specific features of this syndrome remains uncertain. Among those, three genes, AKT3, HNRNPU and ZBTB18 are highly expressed in the brain and point mutations in these genes have been recently identified in children with neurodevelopmental phenotypes. In this study, we report the clinical and molecular data from 17 patients with 1q43q44 microdeletions, four with ZBTB18 mutations and seven with HNRNPU mutations, and review additional data from 37 previously published patients with 1q43q44 microdeletions. We compare clinical data of patients with 1q43q44 microdeletions with those of patients with point mutations in HNRNPU and ZBTB18 to assess the contribution of each gene as well as the possibility of epistasis between genes. Our study demonstrates that AKT3 haploinsufficiency is the main driver for microcephaly, whereas HNRNPU alteration mostly drives epilepsy and determines the degree of intellectual disability. ZBTB18 deletions or mutations are associated with variable corpus callosum anomalies with an incomplete penetrance. ZBTB18 may also contribute to microcephaly and HNRNPU to thin corpus callosum, but with a lower penetrance. Co-deletion of contiguous genes has additive effects. Our results confirm and refine the complex genotype-phenotype correlations existing in the 1qter microdeletion syndrome and define more precisely the neurodevelopmental phenotypes associated with genetic alterations of AKT3, ZBTB18 and HNRNPU in humans.
  •  
2.
  •  
3.
  • Leblond, Claire S, et al. (författare)
  • Meta-analysis of SHANK Mutations in Autism Spectrum Disorders: A Gradient of Severity in Cognitive Impairments.
  • 2014
  • Ingår i: PLoS genetics. - : Public Library of Science (PLoS). - 1553-7404. ; 10:9
  • Tidskriftsartikel (refereegranskat)abstract
    • SHANK genes code for scaffold proteins located at the post-synaptic density of glutamatergic synapses. In neurons, SHANK2 and SHANK3 have a positive effect on the induction and maturation of dendritic spines, whereas SHANK1 induces the enlargement of spine heads. Mutations in SHANK genes have been associated with autism spectrum disorders (ASD), but their prevalence and clinical relevance remain to be determined. Here, we performed a new screen and a meta-analysis of SHANK copy-number and coding-sequence variants in ASD. Copy-number variants were analyzed in 5,657 patients and 19,163 controls, coding-sequence variants were ascertained in 760 to 2,147 patients and 492 to 1,090 controls (depending on the gene), and, individuals carrying de novo or truncating SHANK mutations underwent an extensive clinical investigation. Copy-number variants and truncating mutations in SHANK genes were present in ∼1% of patients with ASD: mutations in SHANK1 were rare (0.04%) and present in males with normal IQ and autism; mutations in SHANK2 were present in 0.17% of patients with ASD and mild intellectual disability; mutations in SHANK3 were present in 0.69% of patients with ASD and up to 2.12% of the cases with moderate to profound intellectual disability. In summary, mutations of the SHANK genes were detected in the whole spectrum of autism with a gradient of severity in cognitive impairment. Given the rare frequency of SHANK1 and SHANK2 deleterious mutations, the clinical relevance of these genes remains to be ascertained. In contrast, the frequency and the penetrance of SHANK3 mutations in individuals with ASD and intellectual disability-more than 1 in 50-warrant its consideration for mutation screening in clinical practice.
  •  
4.
  • Huguet, Guillaume, et al. (författare)
  • Heterogeneous Pattern of Selective Pressure for PRRT2 in Human Populations, but No Association with Autism Spectrum Disorders.
  • 2014
  • Ingår i: PloS one. - : Public Library of Science (PLoS). - 1932-6203. ; 9:3
  • Tidskriftsartikel (refereegranskat)abstract
    • Inherited and de novo genomic imbalances at chromosome 16p11.2 are associated with autism spectrum disorders (ASD), but the causative genes remain unknown. Among the genes located in this region, PRRT2 codes for a member of the synaptic SNARE complex that allows the release of synaptic vesicles. PRRT2 is a candidate gene for ASD since homozygote mutations are associated with intellectual disability and heterozygote mutations cause benign infantile seizures, paroxysmal dyskinesia, or hemiplegic migraine. Here, we explored the contribution of PRRT2 mutations in ASD by screening its coding part in a large sample of 1578 individuals including 431 individuals with ASD, 186 controls and 961 individuals from the human genome Diversity Panel. We detected 24 nonsynonymous variants, 1 frameshift (A217PfsX8) and 1 in-frame deletion of 6 bp (p.A361_P362del). The frameshift mutation was observed in a control with no history of neurological or psychiatric disorders. The p.A361_P362del was observed in two individuals with autism from sub-Saharan African origin. Overall, the frequency of PRRT2 deleterious variants was not different between individuals with ASD and controls. Remarkably, PRRT2 displays a highly significant excess of nonsynonymous (pN) vs synonymous (pS) mutations in Asia (pN/pS = 4.85) and Europe (pN/pS = 1.62) compared with Africa (pN/pS = 0.26; Asia vs Africa: P = 0.000087; Europe vs Africa P = 0.00035; Europe vs Asia P = P = 0.084). We also showed that whole genome amplification performed through rolling cycle amplification could artificially introduce the A217PfsX8 mutation indicating that this technology should not be performed prior to PRRT2 mutation screening. In summary, our results do not support a role for PRRT2 coding sequence variants in ASD, but provide an ascertainment of its genetic variability in worldwide populations that should help researchers and clinicians to better investigate the role of PRRT2 in human diseases.
  •  
5.
  • Khounlotham, Manirath, et al. (författare)
  • Compromised intestinal epithelial barrier induces adaptive immune compensation that protects from colitis
  • 2012
  • Ingår i: Immunity. - Cambridge, United States : Cell Press. - 1074-7613 .- 1097-4180. ; 37:3, s. 563-573
  • Tidskriftsartikel (refereegranskat)abstract
    • Mice lacking junctional adhesion molecule A (JAM-A, encoded by F11r) exhibit enhanced intestinal epithelial permeability, bacterial translocation, and elevated colonic lymphocyte numbers, yet do not develop colitis. To investigate the contribution of adaptive immune compensation in response to increased intestinal epithelial permeability, we examined the susceptibility of F11r(-/-)Rag1(-/-) mice to acute colitis. Although negligible contributions of adaptive immunity in F11r(+/+)Rag1(-/-) mice were observed, F11r(-/-)Rag1(-/-) mice exhibited increased microflora-dependent colitis. Elimination of T cell subsets and cytokine analyses revealed a protective role for TGF-beta-producing CD4(+) T cells in F11r(-/-) mice. Additionally, loss of JAM-A resulted in elevated mucosal and serum IgA that was dependent upon CD4(+) T cells and TGF-beta. Absence of IgA in F11r(+/+)Igha(-/-) mice did not affect disease, whereas F11r(-/-)Igha(-/-) mice displayed markedly increased susceptibility to acute injury-induced colitis. These data establish a role for adaptive immune-mediated protection from acute colitis under conditions of intestinal epithelial barrier compromise.
  •  
6.
  • Koch, Stefan, et al. (författare)
  • The Wnt antagonist Dkk1 regulates intestinal epithelial homeostasis and wound repair
  • 2011
  • Ingår i: Gastroenterology. - Maryland Heights, United States : W.B. Saunders Co.. - 0016-5085 .- 1528-0012. ; 141:1, s. 259-268
  • Tidskriftsartikel (refereegranskat)abstract
    • Background & AimsDkk1 is a secreted antagonist of the Wnt/β-catenin signaling pathway. It is induced by inflammatory cytokines during colitis and exacerbates tissue damage by promoting apoptosis of epithelial cells. However, little is known about the physiologic role of Dkk1 in normal intestinal homeostasis and during wound repair following mucosal injury. We investigated whether inhibition of Dkk1 affects the morphology and function of the adult intestine.MethodsWe used doubleridge mice (Dkk1d/d), which have reduced expression of Dkk1, and an inhibitory Dkk1 antibody to modulate Wnt/β-catenin signaling in the intestine. Intestinal inflammation was induced with dextran sulfate sodium (DSS), followed by a recovery period in which mice were given regular drinking water. Animals were killed before, during, or after DSS administration; epithelial homeostasis and the activity of major signaling pathways were investigated by morphometric analysis, bromo-2′-deoxyuridine incorporation, and immunostaining.ResultsReduced expression of Dkk1 increased proliferation of epithelial cells and lengthened crypts in the large intestine, which was associated with increased transcriptional activity of β-catenin. Crypt extension was particularly striking when Dkk1 was inhibited during acute colitis. Dkk1d/dmice recovered significantly faster from intestinal inflammation but exhibited crypt architectural irregularities and epithelial hyperproliferation compared with wild-type mice. Survival signaling pathways were concurrently up-regulated in Dkk1d/d mice, including the AKT/β-catenin, ERK/Elk-1, and c-Jun pathways.ConclusionsDkk1, an antagonist of Wnt/β-catenin signaling, regulates intestinal epithelial homeostasis under physiologic conditions and during inflammation. Depletion of Dkk1 induces a strong proliferative response that promotes wound repair after colitis.
  •  
7.
  • Lindkvist, Emilie, 1973-, et al. (författare)
  • Untangling social–ecological interactions : A methods portfolio approach to tackling contemporary sustainability challenges in fisheries
  • 2022
  • Ingår i: Fish and Fisheries. - : Wiley. - 1467-2960 .- 1467-2979. ; 23:5, s. 1202-1220
  • Tidskriftsartikel (refereegranskat)abstract
    • Meeting the objectives of sustainable fisheries management requires attention to the complex interactions between humans, institutions and ecosystems that give rise to fishery outcomes. Traditional approaches to studying fisheries often do not fully capture, nor focus on these complex interactions between people and ecosystems. Despite advances in the scope and scale of interactions encompassed by more holistic methods, for example ecosystem-based fisheries management approaches, no single method can adequately capture the complexity of human–nature interactions. Approaches that combine quantitative and qualitative analytical approaches are necessary to generate a deeper understanding of these interactions and illuminate pathways to address fisheries sustainability challenges. However, combining methods is inherently challenging and requires understanding multiple methods from different, often disciplinarily distinct origins, demanding reflexivity of the researchers involved. Social–ecological systems’ research has a history of utilising combinations of methods across the social and ecological realms to account for spatial and temporal dynamics, uncertainty and feedbacks that are key components of fisheries. We describe several categories of analytical methods (statistical modelling, network analysis, dynamic modelling, qualitative analysis and controlled behavioural experiments) and highlight their applications in fisheries research, strengths and limitations, data needs and overall objectives. We then discuss important considerations of a methods portfolio development process, including reflexivity, epistemological and ontological concerns and illustrate these considerations via three case studies. We show that, by expanding their methods portfolios, researchers will be better equipped to study the complex interactions shaping fisheries and contribute to solutions for sustainable fisheries management.
  •  
8.
  • Nava, Porfirio, et al. (författare)
  • Interferon-gamma regulates intestinal epithelial homeostasis through converging beta-catenin signaling pathways
  • 2010
  • Ingår i: Immunity. - Cambridge, United States : Cell Press. - 1074-7613 .- 1097-4180. ; 32:3, s. 392-402
  • Tidskriftsartikel (refereegranskat)abstract
    • Inflammatory cytokines have been proposed to regulate epithelial homeostasis during intestinal inflammation. We report here that interferon-gamma (IFN-gamma) regulates the crucial homeostatic functions of cell proliferation and apoptosis through serine-threonine protein kinase AKT-beta-catenin and Wingless-Int (Wnt)-beta-catenin signaling pathways. Short-term exposure of intestinal epithelial cells to IFN-gamma resulted in activation of beta-catenin through AKT, followed by induction of the secreted Wnt inhibitor Dkk1. Consequently, we observed an increase in Dkk1-mediated apoptosis upon extended IFN-gamma treatment and reduced proliferation through depletion of the Wnt coreceptor LRP6. These effects were enhanced by tumor necrosis factor-alpha (TNF-alpha), suggesting synergism between the two cytokines. Consistent with these results, colitis in vivo was associated with decreased beta-catenin-T cell factor (TCF) signaling, loss of plasma membrane-associated LRP6, and reduced epithelial cell proliferation. Proliferation was partially restored in IFN-gamma-deficient mice. Thus, we propose that IFN-gamma regulates intestinal epithelial homeostasis by sequential regulation of converging beta-catenin signaling pathways.
  •  
9.
  • Nava, Porfirio, et al. (författare)
  • JAM-A regulates epithelial proliferation through Akt/beta-catenin signalling
  • 2011
  • Ingår i: EMBO Reports. - : Wiley-Blackwell Publishing Inc.. - 1469-221X .- 1469-3178. ; 12:4, s. 314-20
  • Tidskriftsartikel (refereegranskat)abstract
    • Expression of the tight junction protein junctional adhesion molecule-A (JAM-A) has been linked to proliferation and tumour progression. However, a direct role for JAM-A in regulating proliferative processes has not been shown. By using complementary in vivo and in vitro approaches, we demonstrate that JAM-A restricts intestinal epithelial cell (IEC) proliferation in a dimerization-dependent manner, by inhibiting Akt-dependent beta-catenin activation. Furthermore, IECs from transgenic JAM-A(-/-)/beta-catenin/T-cell factor reporter mice showed enhanced beta-catenin-dependent transcription. Finally, inhibition of Akt reversed colonic crypt hyperproliferation in JAM-A-deficient mice. These data establish a new link between JAM-A and IEC homeostasis.
  •  
10.
  • Nava, Veronica, et al. (författare)
  • Plastic debris in lakes and reservoirs
  • 2023
  • Ingår i: Nature. - : Springer Nature. - 0028-0836 .- 1476-4687. ; 619:7969, s. 317-322
  • Tidskriftsartikel (refereegranskat)abstract
    • Plastic debris is thought to be widespread in freshwater ecosystems globally(1). However, a lack of comprehensive and comparable data makes rigorous assessment of its distribution challenging(2,3). Here we present a standardized cross-national survey that assesses the abundance and type of plastic debris (>250 mu m) in freshwater ecosystems. We sample surface waters of 38 lakes and reservoirs, distributed across gradients of geographical position and limnological attributes, with the aim to identify factors associated with an increased observation of plastics. We find plastic debris in all studied lakes and reservoirs, suggesting that these ecosystems play a key role in the plastic-pollution cycle. Our results indicate that two types of lakes are particularly vulnerable to plastic contamination: lakes and reservoirs in densely populated and urbanized areas and large lakes and reservoirs with elevated deposition areas, long water-retention times and high levels of anthropogenic influence. Plastic concentrations vary widely among lakes; in the most polluted, concentrations reach or even exceed those reported in the subtropical oceanic gyres, marine areas collecting large amounts of debris(4). Our findings highlight the importance of including lakes and reservoirs when addressing plastic pollution, in the context of pollution management and for the continued provision of lake ecosystem services.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 11

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy