SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Naylor Andrew Stuart 1977 ) ;pers:(Mallard Carina 1963)"

Sökning: WFRF:(Naylor Andrew Stuart 1977 ) > Mallard Carina 1963

  • Resultat 1-4 av 4
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Dean, Justin M, et al. (författare)
  • Partial neuroprotection with low-dose infusion of the alpha2-adrenergic receptor agonist clonidine after severe hypoxia in preterm fetal sheep.
  • 2008
  • Ingår i: Neuropharmacology. - : Elsevier BV. - 0028-3908. ; 55:2, s. 166-74
  • Tidskriftsartikel (refereegranskat)abstract
    • We have previously shown that brief alpha(2)-adrenergic receptor blockade increased neuronal injury after severe hypoxia in preterm fetal sheep. We now examine whether infusion of an alpha(2)-adrenergic receptor agonist, clonidine, is neuroprotective. Preterm fetal sheep (70% gestation) received either saline-vehicle or clonidine at either 10 microg/kg/h (low-dose) or 100 microg/kg/h (high-dose) from 15 min until 4 h after 25 min of umbilical cord occlusion. Both low- and high-dose clonidine infusions after sham-occlusion were associated with transient EEG suppression but no neuronal loss. Low-dose but not high-dose clonidine infusions after umbilical cord occlusion were associated with a significant overall increase in numbers of surviving neurons after three days' recovery. High-dose clonidine was associated with transient hyperglycemia and increased numbers of delayed electrographic seizures. These results provide further evidence that alpha(2)-adrenergic receptor activation shortly after perinatal hypoxia-ischemia can promote neural recovery, but highlight the complex dose-response of exogenous therapy.
  •  
2.
  • Järlestedt, Katarina, et al. (författare)
  • Decreased survival of newborn neurons in the dorsal hippocampus after neonatal LPS exposure in mice.
  • 2013
  • Ingår i: Neuroscience. - : Elsevier BV. - 1873-7544 .- 0306-4522. ; 253, s. 21-28
  • Tidskriftsartikel (refereegranskat)abstract
    • Experimental studies show that inflammation reduces the regenerative capacity in the adult brain. Less is known about how early postnatal inflammation affects neurogenesis, stem cell proliferation, cell survival and learning and memory in young adulthood. In this study we examined if an early life inflammatory challenge alters cell proliferation and survival in distinct anatomical regions of the hippocampus and whether learning and memory were affected. Lipopolysaccharide (LPS, 1 mg/kg) was administered to mice on postnatal day (P) 9 and proliferation and survival of hippocampal cells born either prior to (24 h before LPS), or during the inflammatory insult (48h after LPS) was evaluated. Long-term cell survival of neurons and astrocytes was determined on P 41 and P 60 in the dorsal and ventral horns of the hippocampus. On day 50 the mice were tested in the trace fear conditioning paradigm.There was no effect on the survival of neurons and astrocytes that were born before LPS injection. In contrast, the number of neurons and astrocytes that were born after LPS injection were reduced on P 41. The LPS-induced reduction in cell numbers was specific for the dorsal hippocampus. Neither early (48 h after LPS) or late (33 days after LPS) proliferation of cells was affected by neonatal inflammation and neonatal LPS did not alter the behaviour of young adult mice in the trace fear conditioning test.These data highlight that neonatal inflammation specifically affects survival of dividing neurons and astrocytes, but not post-mitotic cells. The reduction in cell survival could be attributed to less cell survival in the dorsal hippocampus, but had no effect on learning and memory in the young adult.
  •  
3.
  • Smith, Peter L P, 1982, et al. (författare)
  • Neonatal Peripheral Immune Challenge Activates Microglia and Inhibits Neurogenesis in the Developing Murine Hippocampus.
  • 2014
  • Ingår i: Developmental neuroscience. - : S. Karger AG. - 1421-9859 .- 0378-5866. ; 36:2, s. 119-131
  • Tidskriftsartikel (refereegranskat)abstract
    • The early postnatal period represents an important window in rodent hippocampal development with peak hilar neurogenesis and widespread microgliogenesis occurring in the first week of life. Inflammation occurring during this period may negatively influence development, potentially facilitating or increasing susceptibility to later-life pathology. We administered the Gram-negative bacterial coat protein lipopolysaccharide (LPS) systemically at postnatal day 5 (1 mg/kg i.p.) and assessed potential effects on microgliogenesis, inflammation and neurogenesis in the developing hippocampus. LPS administration led to an acute but transient increase in absolute number and density of ionized calcium-binding adaptor molecule 1-immunoreactive microglia, a change attributable to increased proliferation of central nervous system-resident microglia/microglial precursor cells but not infiltration of peripheral monocyte-derived macrophages. qRT-PCR analysis of hippocampal gene expression showed these LPS-mediated changes to be associated with persistent dysregulation of genes associated with both M1 and M2 microglial phenotypes, indicating prolonged alteration in hippocampal inflammatory status. Further, analysis of progenitor cell regulation in the hippocampal subgranular zone revealed a transient inhibition of the neuronal differentiation pathway up to 2 weeks after LPS administration, a change occurring specifically through effects on type 3 neural progenitor cells and independently of altered cell proliferation or survival of newly born cells. Together, our results show that systemic inflammation occurring during the early neonatal period is sufficient to alter inflammatory status and dysregulate the ongoing process of neurogenesis in the developing hippocampal germinal niche. © 2014 S. Karger AG, Basel.
  •  
4.
  • Stridh, Linnea, 1983, et al. (författare)
  • Regulation of Toll-like receptor 1 and -2 in neonatal mouse brain after hypoxia-ischemia.
  • 2011
  • Ingår i: Journal of neuroinflammation. - : Springer Science and Business Media LLC. - 1742-2094. ; 8:1
  • Tidskriftsartikel (refereegranskat)abstract
    • ABSTRACT: BACKGROUND: Hypoxic-ischemic (HI) brain injury remains a major problem in newborns, resulting in increased risk of neurological disorders. Neonatal HI triggers a broad inflammatory reaction in the brain, including activation of the innate immune system. Toll-like receptors (TLRs), which are key components of the innate immune system, are believed to play a role in adult cerebral ischemic injury. The expression of TLRs in the neonatal brain and their regulation after HI is unknown. METHODS: Wild type C57BL/6, TLR 1 knockout (KO) and TLR 2 KO mice were subjected to HI at postnatal day 9 and sacrificed 30 min, 6h, 24h or 5 days after HI. TLR mRNA expression was determined by RT-qPCR and protein and cell type localisation by immunohistochemistry (IHC). To evaluate brain injury, infarct volume was measured in the injured hemisphere. RESULTS: mRNA expression was detected for all investigated TLRs (TLR1-9), both in normal and HI exposed brains. After HI, TLR-1 was down-regulated at 30 min and up-regulated at 6h and 24h. TLR-2 was up-regulated at 6h and 24h, and TLR-7 at 24h. Both TLR-5 and TLR-8 were down-regulated at 24h and 30 min respectively. IHC showed an increase of TLR-1 in neurons in the ipsilateral hemisphere after HI. TLR-2 was constitutively expressed in astrocytes and in a population of neurons in the paraventricular nucleus in the hypothalamus. No changes in expression were detected following HI. Following HI, TLR-2 KO mice, but not TLR-1 KO, showed a decreased infarct volume compared to wild type (p= 0.0051). CONCLUSIONS: This study demonstrates that TLRs are regulated after HI in the neonatal brain. TLR-1 protein was up-regulated in injured areas of the brain but TLR-1 KO animals were not protected from HI. In contrast, TLR-2 was constitutively expressed in the brain and TLR-2 deficiency reduced HI injury. These data suggest that TLR-2, but not TLR-1, plays a role in neonatal HI brain injury.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-4 av 4

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy