SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Naz S.) ;pers:(Wheelock CE)"

Sökning: WFRF:(Naz S.) > Wheelock CE

  • Resultat 1-10 av 11
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  •  
2.
  •  
3.
  •  
4.
  • Naz, S, et al. (författare)
  • Dysregulation of the Tryptophan Pathway Evidences Gender Differences in COPD
  • 2019
  • Ingår i: Metabolites. - : MDPI AG. - 2218-1989. ; 9:10
  • Tidskriftsartikel (refereegranskat)abstract
    • Increased activity of indoleamine 2,3-dioxygenase (IDO) and tryptophan hydroxylase (TPH) have been reported in individuals with chronic obstructive pulmonary disease (COPD). We therefore investigated the effect of gender stratification upon the observed levels of tryptophan metabolites in COPD. Tryptophan, serotonin, kynurenine, and kynurenic acid were quantified in serum of never-smokers (n = 39), smokers (n = 40), COPD smokers (n = 27), and COPD ex-smokers (n = 11) by liquid chromatography coupled with tandem mass spectrometry (LC–MS/MS). The individual metabolite associations with lung function, blood, and bronchoalveolar lavage (BAL) immune-cell composition, as well as chemokine and cytokine levels, were investigated. Stratification by gender and smoking status revealed that the observed alterations in kynurenine and kynurenic acid, and to a lesser extent serotonin, were prominent in males, irrespective of COPD status (kynurenine p = 0.005, kynurenic acid p = 0.009, and serotonin p = 0.02). Inferred serum IDO activity and kynurenine levels decreased in smokers relative to never-smokers (p = 0.005 and p = 0.004, respectively). In contrast, inferred tryptophan hydroxylase (TPH) activity and serotonin levels showed an increase with smoking that reached significance with COPD (p = 0.01 and p = 0.01, respectively). Serum IDO activity correlated with blood CXC chemokine ligand 9 (CXCL9, p = 0.0009, r = 0.93) and chemokine (C-C motif) ligand 4 (CCL4.(p = 0.04, r = 0.73) in female COPD smokers. Conversely, serum serotonin levels correlated with BAL CD4+ T-cells (%) (p = 0.001, r = 0.92) and CD8+ T-cells (%) (p = 0.002, r = −0.90) in female COPD smokers, but not in male COPD smokers (p = 0.1, r = 0.46 and p = 0.1, r = −0.50, respectively). IDO- and TPH-mediated tryptophan metabolites showed gender-based associations in COPD, which were primarily driven by smoking status.
  •  
5.
  • Naz, S, et al. (författare)
  • Metabolomics analysis identifies sex-associated metabotypes of oxidative stress and the autotaxin-lysoPA axis in COPD
  • 2017
  • Ingår i: The European respiratory journal. - : European Respiratory Society (ERS). - 1399-3003 .- 0903-1936. ; 49:6
  • Tidskriftsartikel (refereegranskat)abstract
    • Chronic obstructive pulmonary disease (COPD) is a heterogeneous disease and a leading cause of mortality and morbidity worldwide. The aim of this study was to investigate the sex dependency of circulating metabolic profiles in COPD.Serum from healthy never-smokers (healthy), smokers with normal lung function (smokers), and smokers with COPD (COPD; Global Initiative for Chronic Obstructive Lung Disease stages I–II/A–B) from the Karolinska COSMIC cohort (n=116) was analysed using our nontargeted liquid chromatography–high resolution mass spectrometry metabolomics platform.Pathway analyses revealed that several altered metabolites are involved in oxidative stress. Supervised multivariate modelling showed significant classification of smokers from COPD (p=2.8×10−7). Sex stratification indicated that the separation was driven by females (p=2.4×10−7) relative to males (p=4.0×10−4). Significantly altered metabolites were confirmed quantitatively using targeted metabolomics. Multivariate modelling of targeted metabolomics data confirmed enhanced metabolic dysregulation in females with COPD (p=3.0×10−3) relative to males (p=0.10). The autotaxin products lysoPA (16:0) and lysoPA (18:2) correlated with lung function (forced expiratory volume in 1 s) in males with COPD (r=0.86; p<0.0001), but not females (r=0.44; p=0.15), potentially related to observed dysregulation of the miR-29 family in the lung.These findings highlight the role of oxidative stress in COPD, and suggest that sex-enhanced dysregulation in oxidative stress, and potentially the autotaxin–lysoPA axis, are associated with disease mechanisms and/or prevalence.
  •  
6.
  •  
7.
  • Reinke, SN, et al. (författare)
  • Urinary metabotype of severe asthma evidences decreased carnitine metabolism independent of oral corticosteroid treatment in the U-BIOPRED study
  • 2022
  • Ingår i: The European respiratory journal. - : European Respiratory Society (ERS). - 1399-3003 .- 0903-1936. ; 59:6
  • Tidskriftsartikel (refereegranskat)abstract
    • Asthma is a heterogeneous disease with poorly defined phenotypes. Patients with severe asthma often receive multiple treatments including oral corticosteroids (OCS). Treatment may modify the observed metabotype, rendering it challenging to investigate underlying disease mechanisms. Here, we aimed to identify dysregulated metabolic processes in relation to asthma severity and medication.MethodsBaseline urine was collected prospectively from healthy participants (n=100), patients with mild-to-moderate asthma (n=87) and patients with severe asthma (n=418) in the cross-sectional U-BIOPRED cohort; 12–18-month longitudinal samples were collected from patients with severe asthma (n=305). Metabolomics data were acquired using high-resolution mass spectrometry and analysed using univariate and multivariate methods.ResultsA total of 90 metabolites were identified, with 40 significantly altered (p<0.05, false discovery rate <0.05) in severe asthma and 23 by OCS use. Multivariate modelling showed that observed metabotypes in healthy participants and patients with mild-to-moderate asthma differed significantly from those in patients with severe asthma (p=2.6×10−20), OCS-treated asthmatic patients differed significantly from non-treated patients (p=9.5×10−4), and longitudinal metabotypes demonstrated temporal stability. Carnitine levels evidenced the strongest OCS-independent decrease in severe asthma. Reduced carnitine levels were associated with mitochondrial dysfunction via decreases in pathway enrichment scores of fatty acid metabolism and reduced expression of the carnitine transporter SLC22A5 in sputum and bronchial brushings.ConclusionsThis is the first large-scale study to delineate disease- and OCS-associated metabolic differences in asthma. The widespread associations with different therapies upon the observed metabotypes demonstrate the need to evaluate potential modulating effects on a treatment- and metabolite-specific basis. Altered carnitine metabolism is a potentially actionable therapeutic target that is independent of OCS treatment, highlighting the role of mitochondrial dysfunction in severe asthma.
  •  
8.
  •  
9.
  •  
10.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 11

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy