SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Nesterenko A. V) "

Sökning: WFRF:(Nesterenko A. V)

  • Resultat 1-5 av 5
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Aoyama, T., et al. (författare)
  • The anomalous magnetic moment of the muon in the Standard Model
  • 2020
  • Ingår i: Physics reports. - : Elsevier BV. - 0370-1573 .- 1873-6270. ; 887, s. 1-166
  • Forskningsöversikt (refereegranskat)abstract
    • We review the present status of the Standard Model calculation of the anomalous magnetic moment of the muon. This is performed in a perturbative expansion in the fine-structure constant α and is broken down into pure QED, electroweak, and hadronic contributions. The pure QED contribution is by far the largest and has been evaluated up to and including O(α5) with negligible numerical uncertainty. The electroweak contribution is suppressed by (mμ/MW)2 and only shows up at the level of the seventh significant digit. It has been evaluated up to two loops and is known to better than one percent. Hadronic contributions are the most difficult to calculate and are responsible for almost all of the theoretical uncertainty. The leading hadronic contribution appears at O(α2) and is due to hadronic vacuum polarization, whereas at O(α3) the hadronic light-by-light scattering contribution appears. Given the low characteristic scale of this observable, these contributions have to be calculated with nonperturbative methods, in particular, dispersion relations and the lattice approach to QCD. The largest part of this review is dedicated to a detailed account of recent efforts to improve the calculation of these two contributions with either a data-driven, dispersive approach, or a first-principle, lattice-QCD approach. The final result reads aμSM = 116 591 810(43) x 10-11 and is smaller than the Brookhaven measurement by 3.7 σ. The experimental uncertainty will soon be reduced by up to a factor four by the new experiment currently running at Fermilab, and also by the future J-PARC experiment. This and the prospects to further reduce the theoretical uncertainty in the near future - which are also discussed here - make this quantity one of the most promising places to look for evidence of new physics.
  •  
2.
  • Rodriguez, D., et al. (författare)
  • MATS and LaSpec : High-precision experiments using ion traps and lasers at FAIR
  • 2010
  • Ingår i: The European physical journal. Special topics. - : Springer Science and Business Media LLC. - 1951-6355 .- 1951-6401. ; 183, s. 1-123
  • Forskningsöversikt (refereegranskat)abstract
    • Nuclear ground state properties including mass, charge radii, spins and moments can be determined by applying atomic physics techniques such as Penning-trap based mass spectrometry and laser spectroscopy. The MATS and LaSpec setups at the low-energy beamline at FAIR will allow us to extend the knowledge of these properties further into the region far from stability. The mass and its inherent connection with the nuclear binding energy is a fundamental property of a nuclide, a unique ""fingerprint"". Thus, precise mass values are important for a variety of applications, ranging from nuclear-structure studies like the investigation of shell closures and the onset of deformation, tests of nuclear mass models and mass formulas, to tests of the weak interaction and of the Standard Model. The required relative accuracy ranges from 10(-5) to below 10(-8) for radionuclides, which most often have half-lives well below 1 s. Substantial progress in Penning trap mass spectrometry has made this method a prime choice for precision measurements on rare isotopes. The technique has the potential to provide high accuracy and sensitivity even for very short-lived nuclides. Furthermore, ion traps can be used for precision decay studies and offer advantages over existing methods. With MATS (Precision Measurements of very short-lived nuclei using an Advanced Trapping System for highly-charged ions) at FAIR we aim to apply several techniques to very short-lived radionuclides: High-accuracy mass measurements, in-trap conversion electron and alpha spectroscopy, and trap-assisted spectroscopy. The experimental setup of MATS is a unique combination of an electron beam ion trap for charge breeding, ion traps for beam preparation, and a high-precision Penning trap system for mass measurements and decay studies. For the mass measurements, MATS offers both a high accuracy and a high sensitivity. A relative mass uncertainty of 10(-9) can be reached by employing highly-charged ions and a non-destructive Fourier-Transform Ion-Cyclotron-Resonance (FT-ICR) detection technique on single stored ions. This accuracy limit is important for fundamental interaction tests, but also allows for the study of the fine structure of the nuclear mass surface with unprecedented accuracy, whenever required. The use of the FT-ICR technique provides true single ion sensitivity. This is essential to access isotopes that are produced with minimum rates which are very often the most interesting ones. Instead of pushing for highest accuracy, the high charge state of the ions can also be used to reduce the storage time of the ions, hence making measurements on even shorter-lived isotopes possible. Decay studies in ion traps will become possible with MATS. Novel spectroscopic tools for in-trap high-resolution conversion-electron and charged-particle spectroscopy from carrier-free sources will be developed, aiming e. g. at the measurements of quadrupole moments and E0 strengths. With the possibility of both high-accuracy mass measurements of the shortest-lived isotopes and decay studies, the high sensitivity and accuracy potential of MATS is ideally suited for the study of very exotic nuclides that will only be produced at the FAIR facility. Laser spectroscopy of radioactive isotopes and isomers is an efficient and model-independent approach for the determination of nuclear ground and isomeric state properties. Hyperfine structures and isotope shifts in electronic transitions exhibit readily accessible information on the nuclear spin, magnetic dipole and electric quadrupole moments as well as root-mean-square charge radii. The dependencies of the hyperfine splitting and isotope shift on the nuclear moments and mean square nuclear charge radii are well known and the theoretical framework for the extraction of nuclear parameters is well established. These extracted parameters provide fundamental information on the structure of nuclei at the limits of stability. Vital information on both bulk and valence nuclear properties are derived and an exceptional sensitivity to changes in nuclear deformation is achieved. Laser spectroscopy provides the only mechanism for such studies in exotic systems and uniquely facilitates these studies in a model-independent manner. The accuracy of laser-spectroscopic-determined nuclear properties is very high. Requirements concerning production rates are moderate; collinear spectroscopy has been performed with production rates as few as 100 ions per second and laser-desorption resonance ionization mass spectroscopy (combined with beta-delayed neutron detection) has been achieved with rates of only a few atoms per second. This Technical Design Report describes a new Penning trap mass spectrometry setup as well as a number of complementary experimental devices for laser spectroscopy, which will provide a complete system with respect to the physics and isotopes that can be studied. Since MATS and LaSpec require high-quality low-energy beams, the two collaborations have a common beamline to stop the radioactive beam of in-flight produced isotopes and prepare them in a suitable way for transfer to the MATS and LaSpec setups, respectively.
  •  
3.
  • Lorenz, Ch, et al. (författare)
  • β Decay of 127Cd and Excited States in 127In
  • 2019
  • Ingår i: Physical Review C. - 2469-9985. ; 99:4
  • Tidskriftsartikel (refereegranskat)abstract
    • A dedicated spectroscopic study of the β decay of 127Cd was conducted at the IGISOL facility at the University of Jyväskylä. Following high-resolution mass separation in a Penning trap, β-γ-γ coincidences were used to considerably extend the decay scheme of 127In. The β-decaying 3/2+ and 11/2- states in 127Cd have been identified with the 127Cd ground state and the 283-keV isomer. Their respective half-lives have been measured to 0.45(+12-8)s and 0.36(4) s. The experimentally observed β feeding to excited states of 127In and the decay scheme of 127In are discussed in conjunction with large-scale shell-model calculations.
  •  
4.
  • Rakopoulos, Vasileios, et al. (författare)
  • First isomeric yield ratio measurements by direct ion counting and implications for the angular momentum of the primary fission fragments
  • 2018
  • Ingår i: Physical Review C. - : AMER PHYSICAL SOC. - 2469-9985 .- 2469-9993. ; 98:2
  • Tidskriftsartikel (refereegranskat)abstract
    • We report the first experimental determination of independent isomeric yield ratios using direct ion counting with a Penning trap, which offered such a high resolution in mass that isomeric states could be separated. The measurements were performed at the Ion Guide Isotope Separator On-Line (IGISOL) facility at the University of Jyvaskyla. The isomer production ratios of Ge-81, Y-96,Y-97 Sn-128(,1)30, and Sb-129 in the 25-MeV proton-induced fission of U-na(t) and Th-232 were studied. Three isomeric pairs (Ge-81, Y-96, and Sb-129) were measured for the first time for the U-na(t)(p, f) reaction, while all the reported yield ratios for the Th-232(p, f) reaction were determined for the first time. The comparison of the experimentally determined isomeric yield ratios with data available in the literature shows a reasonable agreement, except for the case of Sn-130 for unspecified reasons. The obtained results were also compared with the GEF model, where good agreement can be noticed in most cases for both reactions. Serious discrepancies can only be observed for the cases of Y-96(,)97 for both reactions. Moreover, based on the isomeric yield ratios, the root-mean-square angular momenta (J(r)(ms)) of the fission fragments after scission were estimated using the TALYS code. The experimentally determined isomeric yield ratios, and consequently the deduced J(rms), for Sn-130 are significantly lower compared to Sn-128 for both fissioning systems. This can be attributed to the more spherical shape of the fragments that contribute to the formation of Sn-130, due to their proximity to the N = 82 shell closure. The values of J(rms) for Sb-129 are higher than Sn-128 for both reactions, despite the same neutron number of both nuclides (N = 78), indicating the odd-Z effect where fission fragments with odd-Z number tend to bear larger angular momentum than even-Z fragments. The isomer production ratio for the isotopes of Sn is more enhanced in the U-na(t)(p, f) reaction than in Th-232(p, f). The opposite is observed for Y-96 and Y-97. These discrepancies might be associated to different scission shapes of the fragments for the two fission reactions, indicating the impact that the different fission modes can have on the isomeric yield ratios.
  •  
5.
  • Nesterenko, D. A., et al. (författare)
  • High-precision mass measurements for the isobaric multiplet mass equation at A = 52
  • 2017
  • Ingår i: Journal of Physics G: Nuclear and Particle Physics. - : IOP Publishing. - 0954-3899 .- 1361-6471. ; 44:6
  • Tidskriftsartikel (refereegranskat)abstract
    • Masses of 52Co, 52Com, 52Fe, 52Fem, and 52Mn have been measured with the JYFLTRAP double Penning trap mass spectrometer. The isobaric multiplet mass equation for the T = 2 quintet at A = 52 has been studied employing the new mass values. No significant breakdown (beyond the level) of the quadratic form of the IMME was observed (). The cubic coefficient was 6.0(32) keV (). The excitation energies for the isomer and the T = 2 isobaric analog state in 52Co have been determined to be 374(13) keV and 2922(13) keV, respectively. The measured mass values for 52Co and 52Com are 29(10) keV and 16(15) keV higher, respectively, than obtained in a recent storage-ring experiment, and significantly lower than predicted by extrapolations. Consequently, this has an impact on the proton separation energies for 52Co and 53Ni relevant for the astrophysical rapid proton capture process. The Q value for the proton decay from the isomer in 53Co has been determined with an unprecedented precision, keV.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-5 av 5

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy