SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Newhouse Stephen) ;spr:eng"

Search: WFRF:(Newhouse Stephen) > English

  • Result 1-7 of 7
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Asselbergs, Folkert W., et al. (author)
  • Large-Scale Gene-Centric Meta-analysis across 32 Studies Identifies Multiple Lipid Loci
  • 2012
  • In: American Journal of Human Genetics. - : Elsevier BV. - 0002-9297. ; 91:5, s. 823-838
  • Journal article (peer-reviewed)abstract
    • Genome-wide association studies (GWASs) have identified many SNPs underlying variations in plasma-lipid levels. We explore whether additional loci associated with plasma-lipid phenotypes, such as high-density lipoprotein cholesterol (HDL-C), low-density lipoprotein cholesterol (LDL-C), total cholesterol (TC), and triglycerides (TGs), can be identified by a dense gene-centric approach. Our meta-analysis of 32 studies in 66,240 individuals of European ancestry was based on the custom similar to 50,000 SNP genotyping array (the ITMAT-Broad-CARe array) covering similar to 2,000 candidate genes. SNP-lipid associations were replicated either in a cohort comprising an additional 24,736 samples or within the Global Lipid Genetic Consortium. We identified four, six, ten, and four unreported SNPs in established lipid genes for HDL-C, LDL-C, TC, and TGs, respectively. We also identified several lipid-related SNPs in previously unreported genes: DGAT2, HCAR2, GPIHBP1, PPARG, and FTO for HDL-C; SOCS3, APOH, SPTY2D1, BRCA2, and VLDLR for LDL-C; SOCS3, UGT1A1, BRCA2, UBE3B, FCGR2A, CHUK, and INSIG2 for TC; and SERPINF2, C4B, GCK, GATA4, INSR, and LPAL2 for TGs. The proportion of explained phenotypic variance in the subset of studies providing individual-level data was 9.9% for HDL-C, 9.5% for LDL-C, 10.3% for TC, and 8.0% for TGs. This large meta-analysis of lipid phenotypes with the use of a dense gene-centric approach identified multiple SNPs not previously described in established lipid genes and several previously unknown loci. The explained phenotypic variance from this approach was comparable to that from a meta-analysis of GWAS data, suggesting that a focused genotyping approach can further increase the understanding of heritability of plasma lipids.
  •  
2.
  • Newton-Cheh, Christopher, et al. (author)
  • Genome-wide association study identifies eight loci associated with blood pressure
  • 2009
  • In: Nature Genetics. - : Springer Science and Business Media LLC. - 1546-1718 .- 1061-4036. ; 41:6, s. 666-676
  • Journal article (peer-reviewed)abstract
    • Elevated blood pressure is a common, heritable cause of cardiovascular disease worldwide. To date, identification of common genetic variants influencing blood pressure has proven challenging. We tested 2.5 million genotyped and imputed SNPs for association with systolic and diastolic blood pressure in 34,433 subjects of European ancestry from the Global BPgen consortium and followed up findings with direct genotyping (N <= 71,225 European ancestry, N <= 12,889 Indian Asian ancestry) and in silico comparison (CHARGE consortium, N 29,136). We identified association between systolic or diastolic blood pressure and common variants in eight regions near the CYP17A1 (P = 7 x 10(-24)), CYP1A2 (P = 1 x 10(-23)), FGF5 (P = 1 x 10(-21)), SH2B3 (P = 3 x 10(-18)), MTHFR (P = 2 x 10(-13)), c10orf107 (P = 1 x 10(-9)), ZNF652 (P = 5 x 10(-9)) and PLCD3 (P = 1 x 10(-8)) genes. All variants associated with continuous blood pressure were associated with dichotomous hypertension. These associations between common variants and blood pressure and hypertension offer mechanistic insights into the regulation of blood pressure and may point to novel targets for interventions to prevent cardiovascular disease.
  •  
3.
  • Johnson, Toby, et al. (author)
  • Blood Pressure Loci Identified with a Gene-Centric Array.
  • 2011
  • In: American Journal of Human Genetics. - : Elsevier BV. - 1537-6605 .- 0002-9297. ; 89:6
  • Journal article (peer-reviewed)abstract
    • Raised blood pressure (BP) is a major risk factor for cardiovascular disease. Previous studies have identified 47 distinct genetic variants robustly associated with BP, but collectively these explain only a few percent of the heritability for BP phenotypes. To find additional BP loci, we used a bespoke gene-centric array to genotype an independent discovery sample of 25,118 individuals that combined hypertensive case-control and general population samples. We followed up four SNPs associated with BP at our p < 8.56 × 10(-7) study-specific significance threshold and six suggestively associated SNPs in a further 59,349 individuals. We identified and replicated a SNP at LSP1/TNNT3, a SNP at MTHFR-NPPB independent (r(2) = 0.33) of previous reports, and replicated SNPs at AGT and ATP2B1 reported previously. An analysis of combined discovery and follow-up data identified SNPs significantly associated with BP at p < 8.56 × 10(-7) at four further loci (NPR3, HFE, NOS3, and SOX6). The high number of discoveries made with modest genotyping effort can be attributed to using a large-scale yet targeted genotyping array and to the development of a weighting scheme that maximized power when meta-analyzing results from samples ascertained with extreme phenotypes, in combination with results from nonascertained or population samples. Chromatin immunoprecipitation and transcript expression data highlight potential gene regulatory mechanisms at the MTHFR and NOS3 loci. These results provide candidates for further study to help dissect mechanisms affecting BP and highlight the utility of studying SNPs and samples that are independent of those studied previously even when the sample size is smaller than that in previous studies.
  •  
4.
  • Shatunov, Aleksey, et al. (author)
  • Chromosome 9p21 in sporadic amyotrophic lateral sclerosis in the UK and seven other countries : a genome-wide association study
  • 2010
  • In: Lancet Neurology. - 1474-4422 .- 1474-4465. ; 9:10, s. 986-994
  • Journal article (peer-reviewed)abstract
    • We have found strong evidence of a genetic association of two single nucleotide polymorphisms on chromosome 9 with sporadic ALS, in line with findings from previous independent GWAS of ALS and linkage studies of ALS-frontotemporal dementia. Our findings together with these earlier findings suggest that genetic variation at this locus on chromosome 9 causes sporadic ALS and familial ALS-frontotemporal dementia. Resequencing studies and then functional analysis should be done to identify the defective gene.
  •  
5.
  • Smith, Bradley N., et al. (author)
  • The C9ORF72 expansion mutation is a common cause of ALS+/-FTD in Europe and has a single founder
  • 2013
  • In: European Journal of Human Genetics. - London : Nature Publishing Group. - 1018-4813 .- 1476-5438. ; 21:1, s. 102-108
  • Journal article (peer-reviewed)abstract
    • A massive hexanucleotide repeat expansion mutation (HREM) in C9ORF72 has recently been linked to amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). Here we describe the frequency, origin and stability of this mutation in ALS+/-FTD from five European cohorts (total n = 1347). Single-nucleotide polymorphisms defining the risk haplotype in linked kindreds were genotyped in cases (n = 434) and controls (n = 856). Haplotypes were analysed using PLINK and aged using DMLE+. In a London clinic cohort, the HREM was the most common mutation in familial ALS+/-FTD: C9ORF72 29/112 (26%), SOD1 27/112 (24%), TARDBP 1/112 (1%) and FUS 4/112 (4%) and detected in 13/216 (6%) of unselected sporadic ALS cases but was rare in controls (3/856, 0.3%). HREM prevalence was high for familial ALS+/-FTD throughout Europe: Belgium 19/22 (86%), Sweden 30/41 (73%), the Netherlands 10/27 (37%) and Italy 4/20 (20%). The HREM did not affect the age at onset or survival of ALS patients. Haplotype analysis identified a common founder in all 137 HREM carriers that arose around 6300 years ago. The haplotype from which the HREM arose is intrinsically unstable with an increased number of repeats (average 8, compared with 2 for controls, P<10(-8)). We conclude that the HREM has a single founder and is the most common mutation in familial and sporadic ALS in Europe.
  •  
6.
  • Talmud, Philippa J., et al. (author)
  • Gene-centric Association Signals for Lipids and Apolipoproteins Identified via the HumanCVD BeadChip
  • 2009
  • In: American Journal of Human Genetics. - : Elsevier BV. - 0002-9297. ; 85:5, s. 628-642
  • Journal article (peer-reviewed)abstract
    • Blood lipids are important cardiovascular disease (CVD) risk factors with both genetic and environmental determinants. The Whitehall II study (n = 5592) was genotyped with the gene-centric HumanCVD BeadChip (Illumina). We identified 195 SNPs in 16 genes/regions associated with 3 major lipid fractions and 2 apolipoprotein components at p < 10(-5), with the associations being broadly concordant with prior genome-wide analysis. SNPs associated with LDL cholesterol and apolipoprotein B were located in LDLR, PCSK9, APOB, CELSR2, HWGCR, CETP, the TOMM40-APOE-C1-C2-C4 cluster, and the APOA5-A4-C3-A1 cluster; SNPs associated with HDL cholesterol and apolipoprotein AI were in CETP, LPL, LIPC, APOA5-A4-C3-A1, and ABCA1; and SNPs associated with triglycerides in GCKR, BAZIB, MLXIPL, LPL, and APOA5-A4-C3-A1. For 48 SNPs in previously unreported loci that were significant at p < 10(-4) in Whitehall II, in silico analysis including the British Women's Heart and Health Study, BRIGHT, ASCOT, and NORDIL studies (total n > 12,500) revealed previously unreported associations of SH2B3 (p < 2.2 x 10(-6)), BMPR2 (p < 2.3 x 10(-7)), BCL3/PVRL2 (flanking APOE; p < 4.4 x 10(-8)), and SMARCA4 (flanking LDLR; p < 2.5 x 10(-7)) with LDL cholesterol. Common alleles in these genes explained 6.1%-14.7% of the variance in the five lipid-related traits, and individuals at opposite tails of the additive allele score exhibited substantial differences in trait levels (e.g., > 1 mmol/L in LDL cholesterol [similar to 1 SD of the trait distribution]). These data suggest that multiple common alleles of small effect can make important contributions to individual differences in blood lipids potentially relevant to the assessment of CVD risk. These genes provide further insights into lipid metabolism and the likely effects of modifying the encoded targets therapeutically.
  •  
7.
  • Voyle, Nicola, et al. (author)
  • Genetic Risk as a Marker of Amyloid-β and Tau Burden in Cerebrospinal Fluid
  • 2017
  • In: Journal of Alzheimer's Disease. - 1387-2877. ; 55:4, s. 1417-1427
  • Journal article (peer-reviewed)abstract
    • Background: The search for a biomarker of Alzheimer's disease (AD) pathology (amyloid-β (Aβ) and tau) is ongoing, with the best markers currently being measurements of Aβ and tau in cerebrospinal fluid (CSF) and via positron emission tomography (PET) scanning. These methods are relatively invasive, costly, and often have high screening failure rates. Consequently, research is aiming to elucidate blood biomarkers of Aβ and tau. Objective: This study aims to investigate a case/control polygenic risk score (PGRS) as a marker of tau and investigate blood markers of a combined Aβ and tau outcome for the first time. A sub-study also considers plasma tau as markers of Aβ and tau pathology in CSF. Methods: We used data from the EDAR∗, DESCRIPA∗∗, and Alzheimer's Disease Neuroimaging Initiative (ADNI) cohorts in a logistic regression analysis to investigate blood markers of Aβ and tau in CSF. In particular, we investigated the extent to which a case/control PGRS is predictive of CSF tau, CSF amyloid, and a combined amyloid and tau outcome. The predictive ability of models was compared to that of age, gender, and APOE genotype ('basic model'). Results: In EDAR and DESCRIPA test data, inclusion of a case/control PGRS was no more predictive of Aβ, and a combined Aβ and tau endpoint than the basic models (accuracies of 66.0, and 73.3 respectively). The tau model saw a small increase in accuracy compared to basic models (59.6%). ADNI 2 test data also showed a slight increase in accuracy for the Aβ model when compared to the basic models (61.4%). Conclusion: We see some evidence that a case/control PGRS is marginally more predictive of Aβ and tau pathology than the basic models. The search for predictive factors of Aβ and tau pathologies, above and beyond demographic information, is still ongoing. Better understanding of AD risk alleles, development of more sensitive assays, and studies of larger sample size are three avenues that may provide such factors. However, the clinical utility of possible predictors of brain Aβ and tau pathologies must also be investigated. ∗'Beta amyloid oligomers in the early diagnosis of AD and as marker for treatment response' ∗∗'Development of screening guidelines and criteria for pre-dementia Alzheimer's disease'.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-7 of 7

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view