SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Niedermeier A) "

Sökning: WFRF:(Niedermeier A)

  • Resultat 1-9 av 9
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  •  
2.
  • Ilieva, S., et al. (författare)
  • Coulomb excitation of neutron-rich Cd isotopes
  • 2014
  • Ingår i: Physical Review C (Nuclear Physics). - 0556-2813. ; 89:1
  • Tidskriftsartikel (refereegranskat)abstract
    • The isotopes (122),(124),Cd-126 were studied in a "safe" Coulomb-excitation experiment at the radioactive ion-beam facility REX-ISOLDE at CERN. The reduced transition probabilities B(E2; 0(g. s)(vertical bar) -> 2(1)(+)) and limits for the quadrupole moments of the first 2(+) excited states in the three isotopes were determined. The onset of collectivity in the vicinity of the Z = 50 and N = 82 shell closures is discussed by comparison with shell model and beyond mean-field calculations.
  •  
3.
  •  
4.
  • Preis, S, et al. (författare)
  • Munich atopy prediction study (MAPS): protocol for a prospective birth cohort addressing clinical and molecular risk factors for atopic dermatitis in early childhood
  • 2022
  • Ingår i: BMJ open. - : BMJ. - 2044-6055. ; 12:9, s. e059256-
  • Tidskriftsartikel (refereegranskat)abstract
    • The pathogenesis of atopic diseases is highly complex, and the exact mechanisms leading to atopic dermatitis (AD) onset in infants remain mostly enigmatic. In addition to an interdependent network of components of skin development in young age and skin barrier dysfunction underlying AD development that is only partially understood, a complex interplay between environmental factors and lifestyle habits with skin barrier and immune dysregulation is suspected to contribute to AD onset. This study aims to comprehensively evaluate individual microbiome and immune responses in the context of environmental determinants related the risk of developing AD in the first 4 years of a child’s life.Methods and analysesThe ‘Munich Atopic Prediction Study’ is a comprehensive clinical and biological investigation of a prospective birth cohort from Munich, Germany. Information on pregnancy, child development, environmental factors, parental exposures to potential allergens and acute or chronic diseases of children and parents are collected by questionnaires together with a meticulous clinical examination by trained dermatologists focusing on allergies, skin health, and in particular signs of AD at 2 months after birth and then every 6 months. In addition, skin barrier functions are assessed through cutometry, corneometry and transepidermal water loss at every visit. These measurements are completed with allergy diagnostics and extensive microbiome analyses from stool and skin swabs as well as transcriptome analyses using skin microbiopsies.The aim is to assess the relevance of different known and yet unknown risk factors of AD onset and exacerbations in infants and to identify possible accessible and robust biomarkers.Ethics and disseminationThe study is approved by the Ethical Committee of the Medical Faculty of the Technical University of Munich (reference 334/16S). All relevant study results will be presented at national and international conferences and in peer-reviewed journals.
  •  
5.
  • Massling, A., et al. (författare)
  • Results and recommendations from an intercomparison of six Hygroscopicity-TDMA systems
  • 2011
  • Ingår i: Atmospheric Measurement Techniques. - : Copernicus GmbH. - 1867-1381 .- 1867-8548. ; 4:3, s. 485-497
  • Tidskriftsartikel (refereegranskat)abstract
    • The performance of six custom-built Hygrocopicity-Tandem Differential Mobility Analyser (H-TDMA) systems was investigated in the frame of an international calibration and intercomparison workshop held in Leipzig, February 2006. The goal of the workshop was to harmonise H-TDMA measurements and develop recommendations for atmospheric measurements and their data evaluation. The H-TDMA systems were compared in terms of the sizing of dry particles, relative humidity (RH) uncertainty, and consistency in determination of number fractions of different hygroscopic particle groups. The experiments were performed in an air-conditioned laboratory using ammonium sulphate particles or an external mixture of ammonium sulphate and soot particles. The sizing of dry particles of the six H-TDMA systems was within 0.2 to 4.2% of the selected particle diameter depending on investigated size and individual system. Measurements of ammonium sulphate aerosol found deviations equivalent to 4.5% RH from the set point of 90% RH compared to results from previous experiments in the literature. Evaluation of the number fraction of particles within the clearly separated growth factor modes of a laboratory generated externally mixed aerosol was done. The data from the H-TDMAs was analysed with a single fitting routine to investigate differences caused by the different data evaluation procedures used for each H-TDMA. The differences between the H-TDMAs were reduced from +12/-13% to +8/-6% when the same analysis routine was applied. We conclude that a common data evaluation procedure to determine number fractions of externally mixed aerosols will improve the comparability of H-TDMA measurements. It is recommended to ensure proper calibration of all flow, temperature and RH sensors in the systems. It is most important to thermally insulate the aerosol humidification unit and the second DMA and to monitor these temperatures to an accuracy of 0.2 degrees C. For the correct determination of external mixtures, it is necessary to take into account size-dependent losses due to diffusion in the plumbing between the DMAs and in the aerosol humidification unit.
  •  
6.
  • Niedermeier, D., et al. (författare)
  • Observation of a link between energy dissipation rate and oscillation frequency of the large-scale circulation in dry and moist Rayleigh-Benard turbulence
  • 2018
  • Ingår i: Physical Review Fluids. - 2469-990X. ; 3:8
  • Tidskriftsartikel (refereegranskat)abstract
    • In this study both the small- and large-scale flow properties of turbulent Rayleigh-Benard convection are investigated. Experiments are carried out using the Pi chamber (aspect ratio Gamma = 2) for Rayleigh number range Ra similar to 10(8)-10(9) and Prandtl number Pr approximate to 0.7. Furthermore, experiments are run for dry and wet conditions, i.e., top and bottom surfaces of the chamber are dry and wet, respectively. For wet conditions we further distinguish between conditions with and without the presence of sodium chloride aerosol particles which, if supersaturated conditions are achieved, lead to cloud droplet formation. We therefore refer to these conditions as moist and cloudy, respectively. We see that the addition of water vapor influences the turbulent flow. In all cases, the turbulent kinetic energy dissipation rates increase with increasing temperature difference, but the slopes are different for wet and dry convection. We do not observe a clear difference between moist and cloudy convection due to low liquid water content. A similar lack of collapse with Ra is observed for the characteristic oscillations of the large-scale circulation. We observe that the first normalized characteristic oscillation frequency increased with increasing temperature difference, i.e., increasing Ra, for all conditions considered, but the slopes are different for wet and dry convection with again no clear difference between moist and cloudy convection. It turns out that the sloshing or torsional mode of the large-scale circulation and the turbulent flow or energy dissipation rate seem to be influenced by the same mechanism additional to the effect of buoyancy alone. These observational results provide supporting evidence that the large-scale circulation is insensitive to phase composition or interfacial physics and rather depends only on the strength of the turbulence.
  •  
7.
  •  
8.
  • Song, Lin, et al. (författare)
  • In Situ Study of Sputtering Nanometer-Thick Gold Films onto 100-nm-Thick Spiro-OMeTAD Films : Implications for Perovskite Solar Cells
  • 2020
  • Ingår i: ACS Applied Nano Materials. - : American Chemical Society (ACS). - 2574-0970. ; 3:6, s. 5987-5994
  • Tidskriftsartikel (refereegranskat)abstract
    • The performance of many perovskite solar cells is closely related to the spiro-OMeTAD/gold interface since gold is used as top contacts, which renders the detailed understanding of the interface formation very important. In this work, sputter deposition as an industry-relevant, high-rate, large-scale, and well-controllable deposition technique is used to prepare gold electrodes on top of a 100-nm-thick spiro-OMeTAD film. In situ grazing-incidence small-angle X-ray scattering (GISAXS) is used to study the nanostructure-growth kinetics of the gold contact on top of the spiro-OMeTAD film during the sputter process. The results show that the gold grows in nanoscale clusters, which then coalesce into a complete yet still nanogranular layer forming the top contact with a thickness of 90 nm. Based on simulations of the two-dimensional GISAXS patterns, additional information about the shape of the nanosized gold cluster is gained at the different cluster growth stages. Furthermore, the diffusion of gold into the spiro-OMeTAD film occurs during the sputter process as verified with X-ray reflectivity. In a depth of 3.5 nm below the gold contact, the gold doping level of the spiro-OMeTAD film is 6.3% irrespective of the final gold contact thickness. Thus, the interface between the spiroOMeTAD film and the Au contact is not sharp as commonly sketched and the contact is grainy, which will be both of importance for the performance of devices such as perovskite solar cells.
  •  
9.
  • Wang, Weijia, et al. (författare)
  • Development of the Morphology during Functional Stack Build-up of P3HT:PCBM Bulk Heterojunction Solar Cells with Inverted Geometry
  • 2015
  • Ingår i: ACS Applied Materials and Interfaces. - : American Chemical Society (ACS). - 1944-8244 .- 1944-8252. ; 7:1, s. 602-610
  • Tidskriftsartikel (refereegranskat)abstract
    • Highly efficient poly(3-hexylthiophene-2,5-diyl) (P3HT):phenyl-C61-butyric acid methyl ester (PCBM) bulk heterojunction solar cells are achieved by using an inverted geometry. The development of the morphology is investigated as a function of the multilayer stack assembling during the inverted solar cell preparation. Atomic force microscopy is used to reveal the surface morphology of each stack, and the inner structure is probed with grazing incidence small-angle X-ray scattering. It is found that the smallest domain size of P3HT is introduced by replicating the fluorine-doped tin oxide structure underneath. The structure sizes of the P3HT:PCBM active layer are further optimized after thermal annealing. Compared to devices with standard geometry, the P3HT:PCBM layer in the inverted solar cells shows smaller domain sizes, which are much closer to the exciton diffusion length in the polymer. The decrease in domain sizes is identified as the main reason for the improvement of the device performance.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-9 av 9

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy