SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Nielsen Jens) ;pers:(Borén Jan 1963)"

Sökning: WFRF:(Nielsen Jens) > Borén Jan 1963

  • Resultat 1-10 av 32
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Nielsen, Jens B, 1962, et al. (författare)
  • Improving the economics of NASH/NAFLD treatment through the use of systems biology
  • 2017
  • Ingår i: Drug Discovery Today. - : Elsevier BV. - 1359-6446 .- 1878-5832. ; 22:10, s. 1532-1538
  • Tidskriftsartikel (refereegranskat)abstract
    • Nonalcoholic steatohepatitis (NASH) is a severe form of nonalcoholic fatty liver disease (NAFLD). We surveyed NASH therapies currently in development, and found a significant variety of targets and approaches. Evaluation and clinical testing of these targets is an expensive and time-consuming process. Systems biology approaches could enable the quantitative evaluation of the likely efficacy and safety of different targets. This motivated our review of recent systems biology studies that focus on the identification of targets and development of effective treatments for NASH. We discuss the potential broader use of genome-scale metabolic models and integrated networks in the validation of drug targets, which could facilitate more productive and efficient drug development decisions for the treatment of NASH.
  •  
2.
  • Altay, Özlem, et al. (författare)
  • Combined Metabolic Activators Accelerates Recovery in Mild-to-Moderate COVID-19
  • 2021
  • Ingår i: Advanced Science. - : Wiley. - 2198-3844. ; 8:17
  • Tidskriftsartikel (refereegranskat)abstract
    • COVID-19 is associated with mitochondrial dysfunction and metabolic abnormalities, including the deficiencies in nicotinamide adenine dinucleotide (NAD+) and glutathione metabolism. Here it is investigated if administration of a mixture of combined metabolic activators (CMAs) consisting of glutathione and NAD+ precursors can restore metabolic function and thus aid the recovery of COVID-19 patients. CMAs include l-serine, N-acetyl-l-cysteine, nicotinamide riboside, and l-carnitine tartrate, salt form of l-carnitine. Placebo-controlled, open-label phase 2 study and double-blinded phase 3 clinical trials are conducted to investigate the time of symptom-free recovery on ambulatory patients using CMAs. The results of both studies show that the time to complete recovery is significantly shorter in the CMA group (6.6 vs 9.3 d) in phase 2 and (5.7 vs 9.2 d) in phase 3 trials compared to placebo group. A comprehensive analysis of the plasma metabolome and proteome reveals major metabolic changes. Plasma levels of proteins and metabolites associated with inflammation and antioxidant metabolism are significantly improved in patients treated with CMAs as compared to placebo. The results show that treating patients infected with COVID-19 with CMAs lead to a more rapid symptom-free recovery, suggesting a role for such a therapeutic regime in the treatment of infections leading to respiratory problems.
  •  
3.
  • Altay, Özlem, et al. (författare)
  • Current Status of COVID-19 Therapies and Drug Repositioning Applications
  • 2020
  • Ingår i: Iscience. - : Elsevier BV. - 2589-0042. ; 23:7
  • Tidskriftsartikel (refereegranskat)abstract
    • The rapid and global spread of a new human coronavirus (SARS-CoV-2) has produced an immediate urgency to discover promising targets for the treatment of COVID-19. Drug repositioning is an attractive approach that can facilitate the drug discovery process by repurposing existing pharmaceuticals to treat illnesses other than their primary indications. Here, we review current information concerning the global health issue of COVID-19 including promising approved drugs and ongoing clinical trials for prospective treatment options. In addition, we describe computational approaches to be used in drug repurposing and highlight examples of in silico studies of drug development efforts against SARS-CoV-2.
  •  
4.
  • Altay, Özlem, et al. (författare)
  • Systems biology perspective for studying the gut microbiota in human physiology and liver diseases
  • 2019
  • Ingår i: EBioMedicine. - : Elsevier BV. - 2352-3964. ; 49:November, s. 363-373
  • Forskningsöversikt (refereegranskat)abstract
    • The advancement in high-throughput sequencing technologies and systems biology approaches have revolutionized our understanding of biological systems and opened a new path to investigate unacknowledged biological phenomena. In parallel, the field of human microbiome research has greatly evolved and the relative contribution of the gut microbiome to health and disease have been systematically explored. This review provides an overview of the network-based and translational systems biology-based studies focusing on the function and composition of gut microbiota. We also discussed the association between the gut microbiome and the overall human physiology, as well as hepatic diseases and other metabolic disorders.
  •  
5.
  • Benfeitas, Rui, et al. (författare)
  • Characterization of heterogeneous redox responses in hepatocellular carcinoma patients using network analysis
  • 2019
  • Ingår i: Ebiomedicine. - : Elsevier BV. - 2352-3964. ; 40, s. 471-487
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Redox metabolism is often considered a potential target for cancer treatment, but a systematic examination of redox responses in hepatocellular carcinoma (HCC) is missing. Methods: Here, we employed systems biology and biological network analyses to reveal key roles of genes associated with redox metabolism in HCC by integrating multi-omics data. Findings: We found that several redox genes, including 25 novel potential prognostic genes, are significantly co-expressed with liver-specific genes and genes associated with immunity and inflammation. Based on an integrative analysis, we found that HCC tumors display antagonistic behaviors in redox responses. The two HCC groups are associated with altered fatty acid, amino acid, drug and hormone metabolism, differentiation, proliferation, and NADPH-independent vs - dependent antioxidant defenses. Redox behavior varies with known tumor subtypes and progression, affecting patient survival. These antagonistic responses are also displayed at the protein and metabolite level and were validated in several independent cohorts. We finally showed the differential redox behavior using mice transcriptomics in HCC and noncancerous tissues and associated with hypoxic features of the two redox gene groups. Interpretation: Our integrative approaches highlighted mechanistic differences among tumors and allowed the identification of a survival signature and several potential therapeutic targets for the treatment of HCC.
  •  
6.
  • Bidkhori, Gholamreza, et al. (författare)
  • Metabolic network-based stratification of hepatocellular carcinoma reveals three distinct tumor subtypes
  • 2018
  • Ingår i: Proceedings of the National Academy of Sciences of the United States of America. - : Proceedings of the National Academy of Sciences. - 0027-8424 .- 1091-6490. ; 115:50
  • Tidskriftsartikel (refereegranskat)abstract
    • Hepatocellular carcinoma (HCC) is one of the most frequent forms of liver cancer, and effective treatment methods are limited due to tumor heterogeneity. There is a great need for comprehensive approaches to stratify HCC patients, gain biological insights into subtypes, and ultimately identify effective therapeutic targets. We stratified HCC patients and characterized each subtype using transcriptomics data, genome-scale metabolic networks and network topology/controllability analysis. This comprehensive systems-level analysis identified three distinct subtypes with substantial differences in metabolic and signaling pathways reflecting at genomic, transcriptomic, and proteomic levels. These subtypes showed large differences in clinical survival associated with altered kynurenine metabolism, WNT/beta-catenin-associated lipid metabolism, and PI3K/AKT/mTOR signaling. Integrative analyses indicated that the three subtypes rely on alternative enzymes (e.g., ACSS1/ACSS2/ACSS3, PKM/PKLR, ALDOB/ALDOA, MTHFD1L/MTHFD2/MTHFD1) to catalyze the same reactions. Based on systems-level analysis, we identified 8 to 28 subtype-specific genes with pivotal roles in controlling the metabolic network and predicted that these genes may be targeted for development of treatment strategies for HCC subtypes by performing in silico analysis. To validate our predictions, we performed experiments using HepG2 cells under normoxic and hypoxic conditions and observed opposite expression patterns between genes expressed in high/moderate/low-survival tumor groups in response to hypoxia, reflecting activated hypoxic behavior in patients with poor survival. In conclusion, our analyses showed that the heterogeneous HCC tumors can be stratified using a metabolic network-driven approach, which may also be applied to other cancer types, and this stratification may have clinical implications to drive the development of precision medicine.
  •  
7.
  • Bosley, J. R., et al. (författare)
  • Informing Pharmacokinetic Models With Physiological Data: Oral Population Modeling of L-Serine in Humans
  • 2021
  • Ingår i: Frontiers in Pharmacology. - : Frontiers Media SA. - 1663-9812. ; 12
  • Tidskriftsartikel (refereegranskat)abstract
    • To determine how to set optimal oral L-serine (serine) dose levels for a clinical trial, existing literature was surveyed. Data sufficient to set the dose was inadequate, and so an (n = 10) phase I-A calibration trial was performed, administering serine with and without other oral agents. We analyzed the trial and the literature data using pharmacokinetic (PK) modeling and statistical analysis. The therapeutic goal is to modulate specific serine-related metabolic pathways in the liver using the lowest possible dose which gives the desired effect since the upper bound was expected to be limited by toxicity. A standard PK approach, in which a common model structure was selected using a fit to data, yielded a model with a single central compartment corresponding to plasma, clearance from that compartment, and an endogenous source of serine. To improve conditioning, a parametric structure was changed to estimate ratios (bioavailability over volume, for example). Model fit quality was improved and the uncertainty in estimated parameters was reduced. Because of the particular interest in the fate of serine, the model was used to estimate whether serine is consumed in the gut, absorbed by the liver, or entered the blood in either a free state, or in a protein- or tissue-bound state that is not measured by our assay. The PK model structure was set up to represent relevant physiology, and this quantitative systems biology approach allowed a broader set of physiological data to be used to narrow parameter and prediction confidence intervals, and to better understand the biological meaning of the data. The model results allowed us to determine the optimal human dose for future trials, including a trial design component including IV and tracer studies. A key contribution is that we were able to use human physiological data from the literature to inform the PK model and to set reasonable bounds on parameters, and to improve model conditioning. Leveraging literature data produced a more predictive, useful model.
  •  
8.
  • Khoomrung, Sakda, 1978, et al. (författare)
  • Rapid Quantification of Yeast Lipid using Microwave-Assisted Total Lipid Extraction and HPLC-CAD
  • 2013
  • Ingår i: Analytical Chemistry. - : American Chemical Society (ACS). - 0003-2700 .- 1520-6882. ; 85:10, s. 4912-4919
  • Tidskriftsartikel (refereegranskat)abstract
    • We here present simple and rapid methods for fast screening of yeast lipids in Saccharomyces cerevisiae. First we introduced a microwave-assisted technique for fast lipid extraction that allows the extraction of lipids within 10 min. The new method enhances extraction rate by 27 times, while maintaining product yields comparable to conventional methods (n = 14, P > 0.05). The recovery (n = 3) from spiking of synthetic standards were 92 +/- 6% for cholesterol, 95 +/- 4% for triacylglycerol, and 92 +/- 4% for free fatty acids. Additionally, the new extraction method combines cell disruption and extraction in one step, and the approach, therefore, not only greatly simplifies sample handling but also reduces analysis time and minimizes sample loss during sample preparation. Second, we developed a chromatographic separation that allowed separation of neutral and polar lipids from the extracted samples within a single run. The separation was performed based on a three gradient solvent system combined with hydrophilic interaction liquid chromatography-HPLC followed by detection using a charged aerosol detector. The method was shown to be highly reproducible in terms of retention time of the analytes (intraday; 0.002-0.034% RSD; n = 10, interday; 0.04-1.35% RSD; n = 5) and peak area (intraday; 0.63-6% RSD; n = 10, interday; 4-12% RSD; n = 5).
  •  
9.
  • Lam, S., et al. (författare)
  • A systems biology approach for studying neurodegenerative diseases
  • 2020
  • Ingår i: Drug Discovery Today. - : Elsevier BV. - 1359-6446 .- 1878-5832. ; 25:7, s. 1146-1159
  • Tidskriftsartikel (refereegranskat)abstract
    • Neurodegenerative diseases (NDDs), such as Alzheimer's (AD) and Parkinson's (PD), are among the leading causes of lost years of healthy life and exert a great strain on public healthcare systems. Despite being first described more than a century ago, no effective cure exists for AD or PD. Although extensively characterised at the molecular level, traditional neurodegeneration research remains marred by narrow-sense approaches surrounding amyloid beta (A beta), tau, and alpha-synuclein (alpha-syn). A systems biology approach enables the integration of multi-omics data and informs discovery of biomarkers, drug targets, and treatment strategies. Here, we present a comprehensive timeline of high-throughput data collection, and associated biotechnological advancements and computational analysis related to AD and PD. We hereby propose that a philosophical change in the definitions of AD and PD is now needed.
  •  
10.
  • Lam, S., et al. (författare)
  • Addressing the heterogeneity in liver diseases using biological networks
  • 2021
  • Ingår i: Briefings in Bioinformatics. - : Oxford University Press (OUP). - 1467-5463 .- 1477-4054. ; 22:2, s. 1751-1766
  • Tidskriftsartikel (refereegranskat)abstract
    • The abnormalities in human metabolism have been implicated in the progression of several complex human diseases, including certain cancers. Hence, deciphering the underlying molecular mechanisms associated with metabolic reprogramming in a disease state can greatly assist in elucidating the disease aetiology. An invaluable tool for establishing connections between global metabolic reprogramming and disease development is the genome-scale metabolic model (GEM). Here, we review recent work on the reconstruction of cell/tissue-type and cancer-specific GEMs and their use in identifying metabolic changes occurring in response to liver disease development, stratification of the heterogeneous disease population and discovery of novel drug targets and biomarkers. We also discuss how GEMs can be integrated with other biological networks for generating more comprehensive cell/tissue models. In addition, we review the various biological network analyses that have been employed for the development of efficient treatment strategies. Finally, we present three case studies in which independent studies converged on conclusions underlying liver disease.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 32
Typ av publikation
tidskriftsartikel (29)
forskningsöversikt (3)
Typ av innehåll
refereegranskat (32)
Författare/redaktör
Nielsen, Jens B, 196 ... (31)
Uhlén, Mathias (31)
Mardinoglu, Adil, 19 ... (25)
Zhang, C. (16)
Arif, Muhammad (13)
visa fler...
Turkez, H. (12)
Li, Xiangyu (11)
Altay, Özlem (9)
Kim, Woonghee (9)
Yang, Hong (8)
Lee, Sunjae (7)
Turkez, Hasan (6)
Mardinoglu, Adil (6)
Zhang, Cheng (6)
Ståhlman, Marcus, 19 ... (6)
Klevstig, Martina (6)
Benfeitas, Rui (5)
Björnson, Elias, 198 ... (5)
Lam, S. (5)
Bidkhori, Gholamreza (4)
Smith, Ulf, 1943 (4)
Marschall, Hanns-Ulr ... (3)
Adiels, Martin, 1976 (3)
Grötli, Morten (3)
Shoaie, Saeed (3)
Piening, B. D. (3)
Shoaie, Saeed, 1985 (3)
Snyder, M (3)
Ogawa, Seishi (3)
Liu, Zhengtao (3)
Bäckhed, Fredrik, 19 ... (2)
Taskinen, M. R. (2)
Soderlund, S (2)
Hakkarainen, A. (2)
Lundbom, N. (2)
Mohammadi, Elyas (2)
Bergh, Per-Olof (2)
Bayram, C. (2)
Bolat, I. (2)
Tozlu, O. O. (2)
Yuan, Meng (2)
Mukhopadhyay, B. (2)
Cinar, R. (2)
Kunos, G. (2)
Bergentall, Mattias (2)
Serlie, M. J. (2)
Ozcan, Mehmet (2)
Akyildiz, M (2)
Shi, Mengnan (2)
visa färre...
Lärosäte
Göteborgs universitet (32)
Chalmers tekniska högskola (32)
Kungliga Tekniska Högskolan (31)
Karolinska Institutet (7)
Stockholms universitet (2)
Språk
Engelska (32)
Forskningsämne (UKÄ/SCB)
Medicin och hälsovetenskap (30)
Naturvetenskap (19)
Lantbruksvetenskap (1)
Samhällsvetenskap (1)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy