SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Nielsen Jens) ;pers:(Zhang C.)"

Sökning: WFRF:(Nielsen Jens) > Zhang C.

  • Resultat 1-10 av 22
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Arif, Muhammad, et al. (författare)
  • INetModels 2.0: An interactive visualization and database of multi-omics data
  • 2021
  • Ingår i: Nucleic Acids Research. - : Oxford University Press (OUP). - 0305-1048 .- 1362-4962. ; 49:W1, s. W271-W276
  • Tidskriftsartikel (refereegranskat)abstract
    • It is essential to reveal the associations between various omics data for a comprehensive understanding of the altered biological process in human wellness and disease. To date, very few studies have focused on collecting and exhibiting multi-omics associations in a single database. Here, we present iNetModels, an interactive database and visualization platform of Multi-Omics Biological Networks (MOBNs). This platform describes the associations between the clinical chemistry, anthropometric parameters, plasma proteomics, plasma metabolomics, as well as metagenomics for oral and gut microbiome obtained from the same individuals. Moreover, iNetModels includes tissue- and cancer-specific Gene Co-expression Networks (GCNs) for exploring the connections between the specific genes. This platform allows the user to interactively explore a single feature's association with other omics data and customize its particular context (e.g. male/female specific). The users can also register their data for sharing and visualization of the MOBNs and GCNs. Moreover, iNetModels allows users who do not have a bioinformatics background to facilitate human wellness and disease research. iNetModels can be accessed freely at https://inetmodels.com without any limitation.
  •  
2.
  • Benfeitas, Rui, et al. (författare)
  • Characterization of heterogeneous redox responses in hepatocellular carcinoma patients using network analysis
  • 2019
  • Ingår i: Ebiomedicine. - : Elsevier BV. - 2352-3964. ; 40, s. 471-487
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Redox metabolism is often considered a potential target for cancer treatment, but a systematic examination of redox responses in hepatocellular carcinoma (HCC) is missing. Methods: Here, we employed systems biology and biological network analyses to reveal key roles of genes associated with redox metabolism in HCC by integrating multi-omics data. Findings: We found that several redox genes, including 25 novel potential prognostic genes, are significantly co-expressed with liver-specific genes and genes associated with immunity and inflammation. Based on an integrative analysis, we found that HCC tumors display antagonistic behaviors in redox responses. The two HCC groups are associated with altered fatty acid, amino acid, drug and hormone metabolism, differentiation, proliferation, and NADPH-independent vs - dependent antioxidant defenses. Redox behavior varies with known tumor subtypes and progression, affecting patient survival. These antagonistic responses are also displayed at the protein and metabolite level and were validated in several independent cohorts. We finally showed the differential redox behavior using mice transcriptomics in HCC and noncancerous tissues and associated with hypoxic features of the two redox gene groups. Interpretation: Our integrative approaches highlighted mechanistic differences among tumors and allowed the identification of a survival signature and several potential therapeutic targets for the treatment of HCC.
  •  
3.
  • Bidkhori, Gholamreza, et al. (författare)
  • Metabolic network-based stratification of hepatocellular carcinoma reveals three distinct tumor subtypes
  • 2018
  • Ingår i: Proceedings of the National Academy of Sciences of the United States of America. - : Proceedings of the National Academy of Sciences. - 0027-8424 .- 1091-6490. ; 115:50
  • Tidskriftsartikel (refereegranskat)abstract
    • Hepatocellular carcinoma (HCC) is one of the most frequent forms of liver cancer, and effective treatment methods are limited due to tumor heterogeneity. There is a great need for comprehensive approaches to stratify HCC patients, gain biological insights into subtypes, and ultimately identify effective therapeutic targets. We stratified HCC patients and characterized each subtype using transcriptomics data, genome-scale metabolic networks and network topology/controllability analysis. This comprehensive systems-level analysis identified three distinct subtypes with substantial differences in metabolic and signaling pathways reflecting at genomic, transcriptomic, and proteomic levels. These subtypes showed large differences in clinical survival associated with altered kynurenine metabolism, WNT/beta-catenin-associated lipid metabolism, and PI3K/AKT/mTOR signaling. Integrative analyses indicated that the three subtypes rely on alternative enzymes (e.g., ACSS1/ACSS2/ACSS3, PKM/PKLR, ALDOB/ALDOA, MTHFD1L/MTHFD2/MTHFD1) to catalyze the same reactions. Based on systems-level analysis, we identified 8 to 28 subtype-specific genes with pivotal roles in controlling the metabolic network and predicted that these genes may be targeted for development of treatment strategies for HCC subtypes by performing in silico analysis. To validate our predictions, we performed experiments using HepG2 cells under normoxic and hypoxic conditions and observed opposite expression patterns between genes expressed in high/moderate/low-survival tumor groups in response to hypoxia, reflecting activated hypoxic behavior in patients with poor survival. In conclusion, our analyses showed that the heterogeneous HCC tumors can be stratified using a metabolic network-driven approach, which may also be applied to other cancer types, and this stratification may have clinical implications to drive the development of precision medicine.
  •  
4.
  • Bosley, J. R., et al. (författare)
  • Informing Pharmacokinetic Models With Physiological Data: Oral Population Modeling of L-Serine in Humans
  • 2021
  • Ingår i: Frontiers in Pharmacology. - : Frontiers Media SA. - 1663-9812. ; 12
  • Tidskriftsartikel (refereegranskat)abstract
    • To determine how to set optimal oral L-serine (serine) dose levels for a clinical trial, existing literature was surveyed. Data sufficient to set the dose was inadequate, and so an (n = 10) phase I-A calibration trial was performed, administering serine with and without other oral agents. We analyzed the trial and the literature data using pharmacokinetic (PK) modeling and statistical analysis. The therapeutic goal is to modulate specific serine-related metabolic pathways in the liver using the lowest possible dose which gives the desired effect since the upper bound was expected to be limited by toxicity. A standard PK approach, in which a common model structure was selected using a fit to data, yielded a model with a single central compartment corresponding to plasma, clearance from that compartment, and an endogenous source of serine. To improve conditioning, a parametric structure was changed to estimate ratios (bioavailability over volume, for example). Model fit quality was improved and the uncertainty in estimated parameters was reduced. Because of the particular interest in the fate of serine, the model was used to estimate whether serine is consumed in the gut, absorbed by the liver, or entered the blood in either a free state, or in a protein- or tissue-bound state that is not measured by our assay. The PK model structure was set up to represent relevant physiology, and this quantitative systems biology approach allowed a broader set of physiological data to be used to narrow parameter and prediction confidence intervals, and to better understand the biological meaning of the data. The model results allowed us to determine the optimal human dose for future trials, including a trial design component including IV and tracer studies. A key contribution is that we were able to use human physiological data from the literature to inform the PK model and to set reasonable bounds on parameters, and to improve model conditioning. Leveraging literature data produced a more predictive, useful model.
  •  
5.
  • Lam, S., et al. (författare)
  • A systems biology approach for studying neurodegenerative diseases
  • 2020
  • Ingår i: Drug Discovery Today. - : Elsevier BV. - 1359-6446 .- 1878-5832. ; 25:7, s. 1146-1159
  • Tidskriftsartikel (refereegranskat)abstract
    • Neurodegenerative diseases (NDDs), such as Alzheimer's (AD) and Parkinson's (PD), are among the leading causes of lost years of healthy life and exert a great strain on public healthcare systems. Despite being first described more than a century ago, no effective cure exists for AD or PD. Although extensively characterised at the molecular level, traditional neurodegeneration research remains marred by narrow-sense approaches surrounding amyloid beta (A beta), tau, and alpha-synuclein (alpha-syn). A systems biology approach enables the integration of multi-omics data and informs discovery of biomarkers, drug targets, and treatment strategies. Here, we present a comprehensive timeline of high-throughput data collection, and associated biotechnological advancements and computational analysis related to AD and PD. We hereby propose that a philosophical change in the definitions of AD and PD is now needed.
  •  
6.
  • Lee, Sunjae, et al. (författare)
  • Integrated Network Analysis Reveals an Association between Plasma Mannose Levels and Insulin Resistance
  • 2016
  • Ingår i: Cell Metabolism. - : Elsevier BV. - 1550-4131 .- 1932-7420. ; 24:1, s. 172-184
  • Tidskriftsartikel (refereegranskat)abstract
    • To investigate the biological processes that are altered in obese subjects, we generated cell-specific integrated networks (INs) by merging genome-scale metabolic, transcriptional regulatory and protein-protein interaction networks. We performed genome-wide transcriptomics analysis to determine the global gene expression changes in the liver and three adipose tissues from obese subjects undergoing bariatric surgery and integrated these data into the cell-specific INs. We found dysregulations in mannose metabolism in obese subjects and validated our predictions by detecting mannose levels in the plasma of the lean and obese subjects. We observed significant correlations between plasma mannose levels, BMI, and insulin resistance (IR). We also measured plasma mannose levels of the subjects in two additional different cohorts and observed that an increased plasma mannose level was associated with IR and insulin secretion. We finally identified mannose as one of the best plasma metabolites in explaining the variance in obesity-independent IR.
  •  
7.
  • Lee, SangWook, et al. (författare)
  • Network analyses identify liver-specific targets for treating liver diseases
  • 2017
  • Ingår i: Molecular Systems Biology. - : EMBO. - 1744-4292. ; 13:8
  • Tidskriftsartikel (refereegranskat)abstract
    • We performed integrative network analyses to identify targets that can be used for effectively treating liver diseases with minimal side effects. We first generated co-expression networks (CNs) for 46 human tissues and liver cancer to explore the functional relationships between genes and examined the overlap between functional and physical interactions. Since increased de novo lipogenesis is a characteristic of nonalcoholic fatty liver disease (NAFLD) and hepatocellular carcinoma (HCC), we investigated the liver-specific genes co-expressed with fatty acid synthase (FASN). CN analyses predicted that inhibition of these liver-specific genes decreases FASN expression. Experiments in human cancer cell lines, mouse liver samples, and primary human hepatocytes validated our predictions by demonstrating functional relationships between these liver genes, and showing that their inhibition decreases cell growth and liver fat content. In conclusion, we identified liver-specific genes linked to NAFLD pathogenesis, such as pyruvate kinase liver and red blood cell (PKLR), or to HCC pathogenesis, such as PKLR, patatin-like phospholipase domain containing 3 (PNPLA3), and proprotein convertase subtilisin/kexin type 9 (PCSK9), all of which are potential targets for drug development.
  •  
8.
  • Lee, Sunjae, et al. (författare)
  • TCSBN: a database of tissue and cancer specific biological networks
  • 2018
  • Ingår i: Nucleic Acids Research. - : Oxford University Press (OUP). - 0305-1048 .- 1362-4962. ; 46:D1
  • Tidskriftsartikel (refereegranskat)abstract
    • Biological networks provide new opportunities for understanding the cellular biology in both health and disease states. We generated tissue specific integrated networks (INs) for liver, muscle and adipose tissues by integratingmetabolic, regulatory and protein-protein interaction networks. We also generated human co-expression networks (CNs) for 46 normal tissues and 17 cancers to explore the functional relationships between genes as well as their relationships with biological functions, and investigate the overlap between functional and physical interactions provided by CNs and INs, respectively. These networks can be employed in the analysis of omics data, provide detailed insight into disease mechanisms by identifying the key biological components and eventually can be used in the development of efficient treatment strategies. Moreover, comparative analysis of the networks may allow for the identification of tissue-specific targets that can be used in the development of drugs with the minimum toxic effect to other human tissues. These context-specific INs and CNs are presented in an interactive website http://inetmodels.com without any limitation.
  •  
9.
  • Li, Xiangyu, et al. (författare)
  • Classification of clear cell renal cell carcinoma based on PKM alternative splicing
  • 2020
  • Ingår i: Heliyon. - : Elsevier BV. - 2405-8440. ; 6:2
  • Tidskriftsartikel (refereegranskat)abstract
    • Clear cell renal cell carcinoma (ccRCC) accounts for 70-80% of kidney cancer diagnoses and displays high molecular and histologic heterogeneity. Hence, it is necessary to reveal the underlying molecular mechanisms involved in progression of ccRCC to better stratify the patients and design effective treatment strategies. Here, we analyzed the survival outcome of ccRCC patients as a consequence of the differential expression of four transcript isoforms of the pyruvate kinase muscle type (PKM). We first extracted a classification biomarker consisting of eight gene pairs whose within-sample relative expression orderings (REOs) could be used to robustly classify the patients into two groups with distinct molecular characteristics and survival outcomes. Next, we validated our findings in a validation cohort and an independent Japanese ccRCC cohort. We finally performed drug repositioning analysis based on transcriptomic expression profiles of drug-perturbed cancer cell lines and proposed that paracetamol, nizatidine, dimethadione and conessine can be repurposed to treat the patients in one of the subtype of ccRCC whereas chenodeoxycholic acid, fenoterol and hexylcaine can be repurposed to treat the patients in the other subtype.
  •  
10.
  • Li, Xiangyu, et al. (författare)
  • Stratification of patients with clear cell renal cell carcinoma to facilitate drug repositioning
  • 2021
  • Ingår i: iScience. - : Elsevier BV. - 2589-0042. ; 24:7
  • Tidskriftsartikel (refereegranskat)abstract
    • Clear cell renal cell carcinoma (ccRCC) is the most common histological type of kidney cancer and has high heterogeneity. Stratification of ccRCC is important since distinct subtypes differ in prognosis and treatment. Here, we applied a systems biology approach to stratify ccRCC into three molecular subtypes with different mRNA expression patterns and prognosis of patients. Further, we developed a set of biomarkers that could robustly classify the patients into each of the three subtypes and predict the prognosis of patients. Then, we reconstructed subtype-specific metabolic models and performed essential gene analysis to identify the potential drug targets. We identified four drug targets, including SOAT1, CRLS1, and ACACB, essential in all the three subtypes and GPD2, exclusively essential to subtype 1. Finally, we repositioned mitotane, an FDA-approved SOAT1 inhibitor, to treat ccRCC and showed that it decreased tumor cell viability and inhibited tumor cell growth based on in vitro experiments.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 22
Typ av publikation
tidskriftsartikel (21)
forskningsöversikt (1)
Typ av innehåll
refereegranskat (22)
Författare/redaktör
Nielsen, Jens B, 196 ... (21)
Mardinoglu, Adil, 19 ... (19)
Uhlén, Mathias (18)
Borén, Jan, 1963 (16)
Arif, Muhammad (10)
visa fler...
Li, Xiangyu (7)
Lee, Sunjae (6)
Björnson, Elias, 198 ... (5)
Ståhlman, Marcus, 19 ... (5)
Turkez, Hasan (4)
Benfeitas, Rui (4)
Bidkhori, Gholamreza (4)
Marschall, Hanns-Ulr ... (3)
Bäckhed, Fredrik, 19 ... (3)
Adiels, Martin, 1976 (3)
Taskinen, M. R. (2)
Soderlund, S (2)
Hakkarainen, A. (2)
Lundbom, N. (2)
Altay, Özlem (2)
Liu, X (1)
Xie, Y. (1)
Mardinoglu, Adil (1)
Yu, F. (1)
Ji, Boyang, 1983 (1)
Abdellah, Tebani (1)
Schwenk, Jochen M. (1)
Bergström, Göran, 19 ... (1)
Fagerberg, Linn (1)
Tian, Z. (1)
Weber, T. (1)
Muller, R. (1)
Kerkhoven, Eduard, 1 ... (1)
Breitling, R. (1)
Liu, W. (1)
Doyle, S. (1)
Snyder, Michael P. (1)
Taskinen, Marja-Riit ... (1)
Matikainen, N. (1)
Ogawa, S. (1)
Grøtli, Morten, 1966 (1)
Ferrannini, E (1)
Larsson, Erik, 1975 (1)
Sato, Y (1)
Laakso, M. (1)
Mancina, Rosellina M ... (1)
Romeo, Stefano, 1976 (1)
Elsässer, Simon J. (1)
Lee, C. Y. (1)
visa färre...
Lärosäte
Chalmers tekniska högskola (22)
Kungliga Tekniska Högskolan (21)
Göteborgs universitet (17)
Karolinska Institutet (5)
Stockholms universitet (1)
Språk
Engelska (22)
Forskningsämne (UKÄ/SCB)
Naturvetenskap (19)
Medicin och hälsovetenskap (18)
Lantbruksvetenskap (1)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy