SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Nielsen Mette) ;pers:(Pershagen Göran)"

Sökning: WFRF:(Nielsen Mette) > Pershagen Göran

  • Resultat 1-10 av 10
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Thacher, Jesse D., et al. (författare)
  • Exposure to long-term source-specific transportation noise and incident breast cancer : A pooled study of eight Nordic cohorts
  • 2023
  • Ingår i: Environment International. - : Elsevier. - 0160-4120 .- 1873-6750. ; 178
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Environmental noise is an important environmental exposure that can affect health. An association between transportation noise and breast cancer incidence has been suggested, although current evidence is limited. We investigated the pooled association between long-term exposure to transportation noise and breast cancer incidence.Methods: Pooled data from eight Nordic cohorts provided a study population of 111,492 women. Road, railway, and aircraft noise were modelled at residential addresses. Breast cancer incidence (all, estrogen receptor (ER) positive, and ER negative) was derived from cancer registries. Hazard ratios (HR) were estimated using Cox Proportional Hazards Models, adjusting main models for sociodemographic and lifestyle variables together with long-term exposure to air pollution.Results: A total of 93,859 women were included in the analyses, of whom 5,875 developed breast cancer. The median (5th–95th percentile) 5-year residential road traffic noise was 54.8 (40.0–67.8) dB Lden, and among those exposed, the median railway noise was 51.0 (41.2–65.8) dB Lden. We observed a pooled HR for breast cancer (95 % confidence interval (CI)) of 1.03 (0.99–1.06) per 10 dB increase in 5-year mean exposure to road traffic noise, and 1.03 (95 % CI: 0.96–1.11) for railway noise, after adjustment for lifestyle and sociodemographic covariates. HRs remained unchanged in analyses with further adjustment for PM2.5 and attenuated when adjusted for NO2 (HRs from 1.02 to 1.01), in analyses using the same sample. For aircraft noise, no association was observed. The associations did not vary by ER status for any noise source. In analyses using <60 dB as a cutoff, we found HRs of 1.08 (0.99–1.18) for road traffic and 1.19 (0.95–1.49) for railway noise.Conclusions: We found weak associations between road and railway noise and breast cancer risk. More high-quality prospective studies are needed, particularly among those exposed to railway and aircraft noise before conclusions regarding noise as a risk factor for breast cancer can be made.
  •  
2.
  • Chen, Jie, et al. (författare)
  • Long-term exposure to ambient air pollution and bladder cancer incidence in a pooled European cohort : the ELAPSE project
  • 2022
  • Ingår i: British Journal of Cancer. - : Springer Science and Business Media LLC. - 0007-0920 .- 1532-1827. ; 126:10, s. 1499-1507
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: The evidence linking ambient air pollution to bladder cancer is limited and mixed.Methods: We assessed the associations of bladder cancer incidence with residential exposure to fine particles (PM2.5), nitrogen dioxide (NO2), black carbon (BC), warm season ozone (O3) and eight PM2.5 elemental components (copper, iron, potassium, nickel, sulfur, silicon, vanadium, and zinc) in a pooled cohort (N = 302,493). Exposures were primarily assessed based on 2010 measurements and back-extrapolated to the baseline years. We applied Cox proportional hazard models adjusting for individual- and area-level potential confounders.Results: During an average of 18.2 years follow-up, 967 bladder cancer cases occurred. We observed a positive though statistically non-significant association between PM2.5 and bladder cancer incidence. Hazard Ratios (HR) were 1.09 (95% confidence interval (CI): 0.93–1.27) per 5 µg/m3 for 2010 exposure and 1.06 (95% CI: 0.99–1.14) for baseline exposure. Effect estimates for NO2, BC and O3 were close to unity. A positive association was observed with PM2.5 zinc (HR 1.08; 95% CI: 1.00–1.16 per 10 ng/m3).Conclusions: We found suggestive evidence of an association between long-term PM2.5 mass exposure and bladder cancer, strengthening the evidence from the few previous studies. The association with zinc in PM2.5 suggests the importance of industrial emissions.
  •  
3.
  • Chen, Jie, et al. (författare)
  • Long-Term Exposure to Source-Specific Fine Particles and Mortality-A Pooled Analysis of 14 European Cohorts within the ELAPSE Project
  • 2022
  • Ingår i: Environmental Science and Technology. - : American Chemical Society (ACS). - 0013-936X .- 1520-5851. ; 56:13, s. 9277-9290
  • Tidskriftsartikel (refereegranskat)abstract
    • We assessed mortality risks associated with sourcespecific fine particles (PM2.5) in a pooled European cohort of 323,782 participants. Cox proportional hazard models were applied to estimate mortality hazard ratios (HRs) for source-specific PM2.5 identified through a source apportionment analysis. Exposure to 2010 annual average concentrations of source-specific PM2.5 components was assessed at baseline residential addresses. The source apportionment resulted in the identification of five sources: traffic, residual oil combustion, soil, biomass and agriculture, and industry. In single-source analysis, all identified sources were significantly positively associated with increased natural mortality risks. In multisource analysis, associations with all sources attenuated but remained statistically significant with traffic, oil, and biomass and agriculture. The highest association per interquartile increase was observed for the traffic component (HR: 1.06; 95% CI: 1.04 and 1.08 per 2.86 mu g/m(3) increase) across five identified sources. On a 1 mu g/m(3) basis, the residual oil-related PM2.5 had the strongest association (HR: 1.13; 95% CI: 1.05 and 1.22), which was substantially higher than that for generic PM2.5 mass, suggesting that past estimates using the generic PM2.5 exposure response function have underestimated the potential clean air health benefits of reducing fossil-fuel combustion. Source-specific associations with cause-specific mortality were in general consistent with findings of natural mortality.
  •  
4.
  • Fuks, Kateryna B., et al. (författare)
  • Arterial blood pressure and long-term exposure to traffic-related air pollution : an analysis in the European Study of Cohorts for Air Pollution Effects (ESCAPE)
  • 2014
  • Ingår i: Journal of Environmental Health Perspectives. - : National Institute of Environmental Health Sciences (NIEHS). - 0091-6765 .- 1552-9924. ; 122:9, s. 896-905
  • Forskningsöversikt (refereegranskat)abstract
    • BACKGROUND: Long-term exposure to air pollution is hypothesized to elevate arterial blood pressure (BP). The existing evidence is scarce and country-specific. OBJECTIVES: We investigated the cross-sectional association of long-term traffic-related air pollution with BP and prevalent hypertension in European populations. METHODS: Fifteen population-based cohorts, participating in the European Study of Cohorts for Air Pollution Effects (ESCAPE), were analysed. Residential exposure to particulate matter and nitrogen oxides was modelled with land use regression using a uniform protocol. Traffic exposure was assessed with traffic indicator variables. We analysed systolic and diastolic BP in participants medicated and non-medicated with BP lowering medication (BPLM) separately, adjusting for personal and area-level risk factors and environmental noise. Prevalent hypertension was defined as ≥ 140 mmHg systolic, or ≥ 90 mmHg diastolic BP, or intake of BPLM. We combined cohort-specific results using random-effects meta-analysis. RESULTS: In the main meta-analysis of 113,926 participants, traffic load on major roads within 100 m of the residence was associated with increased systolic and diastolic BP in non-medicated participants (0.35 mmHg [95% CI: 0.02-0.68] and 0.22 mmHg [95% CI: 0.04-0.40] per 4,000,000 vehicles × m/day, respectively). The estimated odds ratio for prevalent hypertension was 1.05 [95% CI: 0.99-1.11] per 4,000,000 vehicles × m/day. Modelled air pollutants and BP were not clearly associated. CONCLUSIONS: In this first comprehensive meta-analysis of European population-based cohorts we observed a weak positive association of high residential traffic exposure with BP in non-medicated participants, and an elevated OR for prevalent hypertension. The relationship of modelled air pollutants with BP was inconsistent.
  •  
5.
  • Fuks, Kateryna B., et al. (författare)
  • Long-term exposure to ambient air pollution and traffic noise and incident hypertension in seven cohorts of the European study of cohorts for air pollution effects (ESCAPE)
  • 2017
  • Ingår i: European Heart Journal. - : Oxford University Press (OUP). - 0195-668X .- 1522-9645. ; 38:13, s. 983-990
  • Tidskriftsartikel (refereegranskat)abstract
    • Aims We investigated whether traffic-related air pollution and noise are associated with incident hypertension in European cohorts. Methods and results We included seven cohorts of the European study of cohorts for air pollution effects (ESCAPE). We modelled concentrations of particulate matter with aerodynamic diameter <= 2.5 mu m (PM2.5), <= 10 mu m (PM10), >2.5, and <= 10 mu m (PMcoarse), soot (PM2.5 absorbance), and nitrogen oxides at the addresses of participants with land use regression. Residential exposure to traffic noise was modelled at the facade according to the EU Directive 2002/49/EC. We assessed hypertension as (i) self-reported and (ii) measured (systolic BP >= 140mmHg or diastolic BP >= 90mmHg or intake of BP lowering medication (BPLM). We used Poisson regression with robust variance estimation to analyse associations of traffic-related exposures with incidence of hypertension, controlling for relevant confounders, and combined the results from individual studies with random-effects meta-analysis. Among 41 072 participants free of self-reported hypertension at baseline, 6207 (15.1%) incident cases occurred within 5-9 years of follow-up. Incidence of self-reported hypertension was positively associated with PM2.5 (relative risk (RR) 1.22 [95%-confidence interval (CI): 1.08; 1.37] per 5 mu g/m(3)) and PM2.5 absorbance (RR 1.13 [95% CI: 1.02; 1.24] per 10(-5) m(-1)). These estimates decreased slightly upon adjustment for road traffic noise. Road traffic noise was weakly positively associated with the incidence of self-reported hypertension. Among 10 896 participants at risk, 3549 new cases of measured hypertension occurred. We found no clear associations with measured hypertension. Conclusion Long-term residential exposures to air pollution and noise are associated with increased incidence of self-reported hypertension.
  •  
6.
  • Hvidtfeldt, Ulla Arthur, et al. (författare)
  • Long-term low-level ambient air pollution exposure and risk of lung cancer - A pooled analysis of 7 European cohorts
  • 2021
  • Ingår i: Environment International. - : Elsevier BV. - 0160-4120 .- 1873-6750. ; 146
  • Tidskriftsartikel (refereegranskat)abstract
    • Background/aim: Ambient air pollution has been associated with lung cancer, but the shape of the exposure-response function - especially at low exposure levels - is not well described. The aim of this study was to address the relationship between long-term low-level air pollution exposure and lung cancer incidence.Methods: The Effects of Low-level Air Pollution: a Study in Europe (ELAPSE) collaboration pools seven cohorts from across Europe. We developed hybrid models combining air pollution monitoring, land use data, satellite observations, and dispersion model estimates for nitrogen dioxide (NO2), fine particulate matter (PM2.5), black carbon (BC), and ozone (O-3) to assign exposure to cohort participants' residential addresses in 100 m by 100 m grids. We applied stratified Cox proportional hazards models, adjusting for potential confounders (age, sex, calendar year, marital status, smoking, body mass index, employment status, and neighborhood-level socioeconomic status). We fitted linear models, linear models in subsets, Shape-Constrained Health Impact Functions (SCHIF), and natural cubic spline models to assess the shape of the association between air pollution and lung cancer at concentrations below existing standards and guidelines.Results: The analyses included 307,550 cohort participants. During a mean follow-up of 18.1 years, 3956 incident lung cancer cases occurred. Median (Q1, Q3) annual (2010) exposure levels of NO2, PM2.5, BC and O-3 (warm season) were 24.2 mu g/m(3) (19.5, 29.7), 15.4 mu g/m(3) (12.8, 17.3), 1.6 10(-5)m(-1) (1.3, 1.8), and 86.6 mu g/m(3) (78.5, 92.9), respectively. We observed a higher risk for lung cancer with higher exposure to PM2.5 (HR: 1.13, 95% CI: 1.05, 1.23 per 5 mu g/m(3)). This association was robust to adjustment for other pollutants. The SCHIF, spline and subset analyses suggested a linear or supra-linear association with no evidence of a threshold. In subset analyses, risk estimates were clearly elevated for the subset of subjects with exposure below the EU limit value of 25 mu g/m(3). We did not observe associations between NO2, BC or O-3 and lung cancer incidence.Conclusions: Long-term ambient PM2.5 exposure is associated with lung cancer incidence even at concentrations below current EU limit values and possibly WHO Air Quality Guidelines.
  •  
7.
  • Nagel, Gabriele, et al. (författare)
  • Air pollution and incidence of cancers of the stomach and the upper aerodigestive tract in the European Study of Cohorts for Air Pollution Effects (ESCAPE)
  • 2018
  • Ingår i: International Journal of Cancer. - : John Wiley & Sons. - 0020-7136 .- 1097-0215. ; 143:7, s. 1632-1643
  • Tidskriftsartikel (refereegranskat)abstract
    • Air pollution has been classified as carcinogenic to humans. However, to date little is known about the relevance for cancersof the stomach and upper aerodigestive tract (UADT). We investigated the association of long-term exposure to ambient airpollution with incidence of gastric and UADT cancer in 11 European cohorts. Air pollution exposure was assigned by land-useregression models for particulate matter (PM) below 10mm (PM10), below 2.5mm (PM2.5), between 2.5 and 10mm (PMcoarse),PM2.5absorbance and nitrogen oxides (NO2and NOX) as well as approximated by traffic indicators. Cox regression modelswith adjustment for potential confounders were used for cohort-specific analyses. Combined estimates were determined withrandom effects meta-analyses. During average follow-up of 14.1 years of 305,551 individuals, 744 incident cases of gastriccancer and 933 of UADT cancer occurred. The hazard ratio for an increase of 5mg/m3of PM2.5was 1.38 (95% CI 0.99; 1.92)for gastric and 1.05 (95% CI 0.62; 1.77) for UADT cancers. No associations were found for any of the other exposures consid-ered. Adjustment for additional confounders and restriction to study participants with stable addresses did not influencemarkedly the effect estimate for PM2.5and gastric cancer. Higher estimated risks of gastric cancer associated with PM2.5wasfound in men (HR 1.98 [1.30; 3.01]) as compared to women (HR 0.85 [0.5; 1.45]). This large multicentre cohort study showsan association between long-term exposure to PM2.5and gastric cancer, but not UADT cancers, suggesting that air pollutionmay contribute to gastric cancer risk.
  •  
8.
  • Raaschou-Nielsen, Ole, et al. (författare)
  • Air pollution and lung cancer incidence in 17 European cohorts : prospective analyses from the European Study of Cohorts for Air Pollution Effects (ESCAPE)
  • 2013
  • Ingår i: The Lancet Oncology. - 1470-2045 .- 1474-5488. ; 14:9, s. 813-822
  • Tidskriftsartikel (refereegranskat)abstract
    • BACKGROUND: Ambient air pollution is suspected to cause lung cancer. We aimed to assess the association between long-term exposure to ambient air pollution and lung cancer incidence in European populations.METHODS: This prospective analysis of data obtained by the European Study of Cohorts for Air Pollution Effects used data from 17 cohort studies based in nine European countries. Baseline addresses were geocoded and we assessed air pollution by land-use regression models for particulate matter (PM) with diameter of less than 10 μm (PM10), less than 2·5 μm (PM2·5), and between 2·5 and 10 μm (PMcoarse), soot (PM2·5absorbance), nitrogen oxides, and two traffic indicators. We used Cox regression models with adjustment for potential confounders for cohort-specific analyses and random effects models for meta-analyses.FINDINGS: The 312 944 cohort members contributed 4 013 131 person-years at risk. During follow-up (mean 12·8 years), 2095 incident lung cancer cases were diagnosed. The meta-analyses showed a statistically significant association between risk for lung cancer and PM10 (hazard ratio [HR] 1·22 [95% CI 1·03-1·45] per 10 μg/m(3)). For PM2·5 the HR was 1·18 (0·96-1·46) per 5 μg/m(3). The same increments of PM10 and PM2·5 were associated with HRs for adenocarcinomas of the lung of 1·51 (1·10-2·08) and 1·55 (1·05-2·29), respectively. An increase in road traffic of 4000 vehicle-km per day within 100 m of the residence was associated with an HR for lung cancer of 1·09 (0·99-1·21). The results showed no association between lung cancer and nitrogen oxides concentration (HR 1·01 [0·95-1·07] per 20 μg/m(3)) or traffic intensity on the nearest street (HR 1·00 [0·97-1·04] per 5000 vehicles per day).INTERPRETATION: Particulate matter air pollution contributes to lung cancer incidence in Europe.FUNDING: European Community's Seventh Framework Programme.
  •  
9.
  • Raaschou-Nielsen, Ole, et al. (författare)
  • Outdoor air pollution and risk for kidney parenchyma cancer in 14 European cohorts
  • 2017
  • Ingår i: International Journal of Cancer. - : Wiley. - 0020-7136 .- 1097-0215. ; 140:7, s. 1528-1537
  • Tidskriftsartikel (refereegranskat)abstract
    • Several studies have indicated weakly increased risk for kidney cancer among occupational groups exposed to gasoline vapors, engine exhaust, polycyclic aromatic hydrocarbons and other air pollutants, although not consistently. It was the aim to investigate possible associations between outdoor air pollution at the residence and the incidence of kidney parenchyma cancer in the general population. We used data from 14 European cohorts from the ESCAPE study. We geocoded and assessed air pollution concentrations at baseline addresses by land-use regression models for particulate matter (PM10 , PM2.5 , PMcoarse , PM2.5 absorbance (soot)) and nitrogen oxides (NO2 , NOx ), and collected data on traffic. We used Cox regression models with adjustment for potential confounders for cohort-specific analyses and random effects models for meta-analyses to calculate summary hazard ratios (HRs). The 289,002 cohort members contributed 4,111,908 person-years at risk. During follow-up (mean 14.2 years) 697 incident cancers of the kidney parenchyma were diagnosed. The meta-analyses showed higher HRs in association with higher PM concentration, e.g. HR=1.57 (95%CI: 0.81-3.01) per 5μg/m(3) PM2.5 and HR=1.36 (95%CI: 0.84-2.19) per 10(-5) m(-1) PM2.5 absorbance, albeit never statistically significant. The HRs in association with nitrogen oxides and traffic density on the nearest street were slightly above one. Sensitivity analyses among participants who did not change residence during follow-up showed stronger associations, but none were statistically significant. This study provides suggestive evidence that exposure to outdoor PM at the residence may be associated with higher risk for kidney parenchyma cancer; the results should be interpreted cautiously as associations may be due to chance.
  •  
10.
  • Wang, Meng, et al. (författare)
  • Long-term exposure to elemental constituents of particulate matter and cardiovascular mortality in 19 European cohorts : Results from the ESCAPE and TRANSPHORM projects
  • 2014
  • Ingår i: Environment International. - : Elsevier BV. - 0160-4120 .- 1873-6750. ; 66, s. 97-106
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Associations between long-term exposure to ambient particulate matter (PM) and cardiovascular (CVD) mortality have been widely recognized. However, health effects of long-term exposure to constituents of PM on total CVD mortality have been explored in a single study only. Aims: The aim of this study was to examine the association of PM composition with cardiovascular mortality. Methods: We used data from 19 European ongoing cohorts within the framework of the ESCAPE (European Study of Cohorts for Air Pollution Effects) and TRANSPHORM (Transport related Air Pollution and Health impacts Integrated Methodologies for Assessing Particulate Matter) projects. Residential annual average exposure to elemental constituents within particle matter smaller than 2.5 and 10 pm (PM2.5 and PM10) was estimated using Land Use Regression models. Eight elements representing major sources were selected a priori (copper, iron, potassium, nickel, sulfur, silicon, vanadium and zinc). Cohort-specific analyses were conducted using Cox proportional hazards models with a standardized protocol. Random-effects metaanalysis was used to calculate combined effect estimates. Results: The total population consisted of 322,291 participants, with 9545 CVD deaths. We found no statistically significant associations between any of the elemental constituents in PM2.5 or PM10 and CVD mortality in the pooled analysis. Most of the hazard ratios (HRs) were close to unity, e.g. for PM10 Fe the combined HR was 0.96 (0.84-1.09). Elevated combined HRs were found for PM2.5 Si (1.17, 95% Cl: 0.93-1.47), and S in PM2.5 (1.08,95% Cl: 0.95-1.22) and PM10 (1.09,95% Cl: 0.90-132). Conclusion: In a joint analysis of 19 European cohorts, we found no statistically significant association between long-term exposure to 8 elemental constituents of particles and total cardiovascular mortality.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 10

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy