SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Nilsson Karin) ;pers:(Nelander Sven)"

Sökning: WFRF:(Nilsson Karin) > Nelander Sven

  • Resultat 1-10 av 18
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Ilkhanizadeh, Shirin, et al. (författare)
  • Live Detection of Neural Progenitors and Glioblastoma Cells by an Oligothiophene Derivative
  • 2023
  • Ingår i: ACS Applied Bio Materials. - : American Chemical Society (ACS). - 2576-6422. ; 6:9, s. 3790-3797
  • Tidskriftsartikel (refereegranskat)abstract
    • There is an urgent need for simple and non-invasive identification of live neural stem/progenitor cells (NSPCs) in the developing and adult brain as well as in disease, such as in brain tumors, due to the potential clinical importance in prognosis, diagnosis, and treatment of diseases of the nervous system. Here, we report a luminescent conjugated oligothiophene (LCO), named p-HTMI, for non-invasive and non-amplified real-time detection of live human patient-derived glioblastoma (GBM) stem cell-like cells and NSPCs. While p-HTMI stained only a small fraction of other cell types investigated, the mere addition of p-HTMI to the cell culture resulted in efficient detection of NSPCs or GBM cells from rodents and humans within minutes. p-HTMI is functionalized with a methylated imidazole moiety resembling the side chain of histidine/histamine, and non-methylated analogues were not functional. Cell sorting experiments of human GBM cells demonstrated that p-HTMI labeled the same cell population as CD271, a proposed marker for stem cell-like cells and rapidly migrating cells in glioblastoma. Our results suggest that the LCO p-HTMI is a versatile tool for immediate and selective detection of neural and glioma stem and progenitor cells.
  •  
2.
  •  
3.
  • Baskaran, Sathishkumar, 1988- (författare)
  • New Molecular Approaches to Glioblastoma Therapy
  • 2017
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • Glioblastoma (GBM) is the most common high-grade brain tumor diagnosed in patients who are more than 50 years of age. The standard of care treatment is surgery, followed by radiotherapy and chemotherapy. The median life expectancy of patients is only between 12 to 15 months after receiving current treatment regimes. Hence, identification of new therapeutic compounds and gene targets are highly warranted. This thesis describes four interlinked studies to attain this goal. In study 1, we explored drug combination effects in a material of 41 patient-derived GBM cell (GC) cultures. Synergies between three compounds, pterostilbene, gefitinib, and sertraline, resulted in effective killing of GC and can be predicted by biomarkers. In study 2, we performed a large-scale screening of FDA approved compounds (n=1544) in a larger panel of GCs (n=106). By combining the large-scale drug response data with GCs genomics data, we built a novel computational model to predict the sensitivity of each compound for a given GC. A notable finding was that GCs respond very differently to proteasome inhibitors in both in-vitro and in-vivo. In study 3, we explored new gene targets by RNAi (n=1112) in a panel of GC cells. We found that loss of transcription factor ZBTB16/PLZF inhibits GC cell viability, proliferation, migration, and invasion. These effects were due to downregulation of c-MYC and Cyclin B1 after the treatment. In study 4, we tested the genomic stability of three GCs upon multiple passaging. Using molecular and mathematical analyses, we showed that the GCs undergo both systematic adaptations and sequential clonal takeovers. Such changes tend to affect a broad spectrum of pathways. Therefore, a systematic analysis of cell culture stability will be essential to make use of primary cells for translational oncology.Taken together, these studies deepen our knowledge of the weak points of GBM and provide several targets and biomarkers for further investigation. The work in this thesis can potentially facilitate the development of targeted therapies and result in more accurate tools for patient diagnostics and stratification. 
  •  
4.
  •  
5.
  • Cancer, Matko, et al. (författare)
  • BET and Aurora Kinase A inhibitors synergize against MYCN-positive human glioblastoma cells
  • 2019
  • Ingår i: Cell Death and Disease. - : NATURE PUBLISHING GROUP. - 2041-4889. ; 10
  • Tidskriftsartikel (refereegranskat)abstract
    • Glioblastoma multiforme (GBM) is the most common primary malignant brain tumor in adults. Patients usually undergo surgery followed by aggressive radio- and chemotherapy with the alkylating agent temozolomide (TMZ). Still, median survival is only 12-15 months after diagnosis. Many human cancers including GBMs demonstrate addiction to MYC transcription factor signaling and can become susceptible to inhibition of MYC downstream genes. JQ1 is an effective inhibitor of BET Bromodomains, a class of epigenetic readers regulating expression of downstream MYC targets. Here, we show that BET inhibition decreases viability of patient-derived GBM cell lines. We propose a distinct expression signature of MYCN-elevated GBM cells that correlates with significant sensitivity to BET inhibition. In tumors showing JQ1 sensitivity, we found enrichment of pathways regulating cell cycle, DNA damage response and repair. As DNA repair leads to acquired chemoresistance to TMZ, JQ1 treatment in combination with TMZ synergistically inhibited proliferation of MYCN-elevated cells. Bioinformatic analyses further showed that the expression of MYCN correlates with Aurora Kinase A levels and Aurora Kinase inhibitors indeed showed synergistic efficacy in combination with BET inhibition. Collectively, our data suggest that BET inhibitors could potentiate the efficacy of either TMZ or Aurora Kinase inhibitors in GBM treatment.
  •  
6.
  •  
7.
  • Dalmo, Erika, et al. (författare)
  • Targeting SOX2 in glioblastoma cells reveals heterogeneity in SOX2 dependency
  • Annan publikation (övrigt vetenskapligt/konstnärligt)abstract
    • Glioblastoma (GBM) is a lethal disease with no curative treatment. SOX2 is a stem cell transcription factor which is widely expressed across human GBM tumors. Downregulation of SOX2 inhibits tumor formation and its depletion leads to a complete stop of cell proliferation. Despite its known important role in GBM, there is a lack of SOX2 overexpression studies in human GBM cells cultured under stem cell conditions. Previous work in our lab suggests that SOX2 levels need to be precisely maintained for GBM cells to thrive. In this project, we have investigated how altered SOX2 expression affects primary human GBM lines. We found that elevated SOX2 expression inhibited proliferation in a dose-dependent manner in three out of four GBM cell lines. Global gene expression in the resistant line was shifted towards that of the proliferation-inhibited lines upon SOX2 induction. However, SOX2 induction also led to an increase in a GBM stem cell injury response phenotype, which was not present in proliferation-inhibited lines. Furthermore, CRISPR/Cas9-mediated SOX2 knockout revealed a SOX2 independence in the resistant cell line, where SOX2-negative cells could be propagated both in vitro and in vivo.
  •  
8.
  • Kaffes, Ioannis, et al. (författare)
  • Human Mesenchymal glioblastomas are characterized by an increased immune cell presence compared to Proneural and Classical tumors
  • 2019
  • Ingår i: Oncoimmunology. - : TAYLOR & FRANCIS INC. - 2162-4011 .- 2162-402X. ; 8:11
  • Tidskriftsartikel (refereegranskat)abstract
    • Glioblastoma (GBM) is the most aggressive malignant primary brain tumor in adults, with a median survival of 14.6 months. Recent efforts have focused on identifying clinically relevant subgroups to improve our understanding of pathogenetic mechanisms and patient stratification. Concurrently, the role of immune cells in the tumor microenvironment has received increasing attention, especially T cells and tumor-associated macrophages (TAM). The latter are a mixed population of activated brain-resident microglia and infiltrating monocytes/monocyte-derived macrophages, both of which express ionized calcium-binding adapter molecule 1 (IBA1). This study investigated differences in immune cell subpopulations among distinct transcriptional subtypes of GBM. Human GBM samples were molecularly characterized and assigned to Proneural, Mesenchymal or Classical subtypes as defined by NanoString nCounter Technology. Subsequently, we performed and analyzed automated immunohistochemical stainings for TAM as well as specific T cell populations. The Mesenchymal subtype of GBM showed the highest presence of TAM, CD8(+), CD3(+) and FOXP3(+) T cells, as compared to Proneural and Classical subtypes. High expression levels of the TAM-related gene AIF1, which encodes the TAM-specific protein IBA1, correlated with a worse prognosis in Proneural GBM, but conferred a survival benefit in Mesenchymal tumors. We used our data to construct a mathematical model that could reliably identify Mesenchymal GBM with high sensitivity using a combination of the aforementioned cell-specific IHC markers. In conclusion, we demonstrated that molecularly distinct GBM subtypes are characterized by profound differences in the composition of their immune microenvironment, which could potentially help to identify tumors amenable to immunotherapy.
  •  
9.
  • Kitambi, Satish Srinivas, et al. (författare)
  • Vulnerability of Glioblastoma Cells to Catastrophic Vacuolization and Death Induced by a Small Molecule
  • 2014
  • Ingår i: Cell. - : Elsevier BV. - 0092-8674 .- 1097-4172. ; 157:2, s. 313-328
  • Tidskriftsartikel (refereegranskat)abstract
    • Glioblastoma multiforme (GBM) is the most aggressive form of brain cancer with marginal life expectancy. Based on the assumption that GBM cells gain functions not necessarily involved in the cancerous process, patient-derived glioblastoma cells (GCs) were screened to identify cellular processes amenable for development of targeted treatments. The quinine-derivative NSC13316 reliably and selectively compromised viability. Synthetic chemical expansion reveals delicate structure-activity relationship and analogs with increased potency, termed Vacquinols. Vacquinols stimulate death by membrane ruffling, cell rounding, massive macropinocytic vacuole accumulation, ATP depletion, and cytoplasmic membrane rupture of GCs. The MAP kinase MKK4, identified by a shRNA screen, represents a critical signaling node. Vacquinol-1 displays excellent in vivo pharmacokinetics and brain exposure, attenuates disease progression, and prolongs survival in a GBM animal model. These results identify a vulnerability to massive vacuolization that can be targeted by small molecules and point to the possible exploitation of this process in the design of anticancer therapies.
  •  
10.
  • Mitchell, Jonathan S., et al. (författare)
  • Genome-wide association study identifies multiple susceptibility loci for multiple myeloma
  • 2016
  • Ingår i: Nature Communications. - : Springer Science and Business Media LLC. - 2041-1723. ; 7
  • Tidskriftsartikel (refereegranskat)abstract
    • Multiple myeloma (MM) is a plasma cell malignancy with a significant heritable basis. Genome-wide association studies have transformed our understanding of MM predisposition, but individual studies have had limited power to discover risk loci. Here we perform a meta-analysis of these GWAS, add a new GWAS and perform replication analyses resulting in 9,866 cases and 239,188 controls. We confirm all nine known risk loci and discover eight new loci at 6p22.3 (rs34229995, P = 1.31 x 10(-8)), 6q21 (rs9372120, P = 9.09 x 10(-15)), 7q36.1 (rs7781265, P = 9.71 x 10(-9)), 8q24.21 (rs1948915, P = 4.20 x 10(-11)), 9p21.3 (rs2811710, P = 1.72 x 10(-13)), 10p12.1 (rs2790457, P = 1.77 x 10(-8)), 16q23.1 (rs7193541, P = 5.00 x 10(-12)) and 20q13.13 (rs6066835, P = 1.36 x 10(-13)), which localize in or near to JARID2, ATG5, SMARCD3, CCAT1, CDKN2A, WAC, RFWD3 and PREX1. These findings provide additional support for a polygenic model of MM and insight into the biological basis of tumour development.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 18
Typ av publikation
tidskriftsartikel (12)
annan publikation (5)
doktorsavhandling (1)
Typ av innehåll
refereegranskat (12)
övrigt vetenskapligt/konstnärligt (6)
Författare/redaktör
Westermark, Bengt (13)
Alafuzoff, Irina (2)
Kalushkova, Antonia (2)
Hesselager, Göran (2)
Holland, Eric C. (2)
visa fler...
Sreedharan, Smitha (2)
Claesson-Welsh, Lena (1)
Pontén, Fredrik (1)
Andang, M (1)
Nilsson, Peter (1)
Lindskog, Cecilia (1)
Krona, Cecilia, 1976 (1)
Lenhoff, Stig (1)
Waage, Anders (1)
Hansson, Markus (1)
Turesson, Ingemar (1)
Olsson, M. (1)
Sintorn, Ida-Maria (1)
Nilsson, Björn (1)
Swartling, Fredrik J ... (1)
Kitambi, Satish Srin ... (1)
Jernberg-Wiklund, He ... (1)
Gullberg, Urban (1)
Holmqvist, Bo (1)
Englund, Elisabet (1)
Artursson, Per (1)
Ernfors, Patrik (1)
Jöud, Magnus (1)
Thorleifsson, Gudmar (1)
Försti, Asta (1)
Goldschmidt, Hartmut (1)
Hemminki, Kari (1)
Kaiser, Martin (1)
Rafnar, Thorunn (1)
Weinhold, Niels (1)
Thorsteinsdottir, Un ... (1)
Stefansson, Kari (1)
Svensson, Richard (1)
Libard, Sylwia (1)
Szulzewsky, Frank (1)
Cimino, Patrick J. (1)
Chen, Zhihong (1)
Pietras, Alexander (1)
Hambardzumyan, Dolor ... (1)
Ali, Mina (1)
Wihlborg, Anna-Karin (1)
Mellqvist, Ulf-Henri ... (1)
Swaminathan, Bhairav ... (1)
Johnsson, Ellinor (1)
visa färre...
Lärosäte
Uppsala universitet (18)
Karolinska Institutet (4)
Lunds universitet (3)
Göteborgs universitet (2)
Stockholms universitet (2)
Linköpings universitet (1)
visa fler...
Chalmers tekniska högskola (1)
Gymnastik- och idrottshögskolan (1)
visa färre...
Språk
Engelska (18)
Forskningsämne (UKÄ/SCB)
Medicin och hälsovetenskap (17)
Naturvetenskap (4)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy