SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Nilsson Mats) ;pers:(Laudon Hjalmar)"

Sökning: WFRF:(Nilsson Mats) > Laudon Hjalmar

  • Resultat 1-10 av 26
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Campeau, Audrey, et al. (författare)
  • Aquatic export of young dissolved and gaseous carbon from a pristine boreal fen : Implications for peat carbon stock stability
  • 2017
  • Ingår i: Global Change Biology. - : Wiley. - 1354-1013 .- 1365-2486. ; 23:12, s. 5523-5536
  • Tidskriftsartikel (refereegranskat)abstract
    • The stability of northern peatland's carbon (C) store under changing climate is of major concern for the global C cycle. The aquatic export of C from boreal peatlands is recognized as both a critical pathway for the remobilization of peat C stocks as well as a major component of the net ecosystem C balance (NECB). Here, we present a full year characterization of radiocarbon content (14C) of dissolved organic carbon (DOC), carbon dioxide (CO2), and methane (CH4) exported from a boreal peatland catchment coupled with 14C characterization of the catchment's peat profile of the same C species. The age of aquatic C in runoff varied little throughout the year and appeared to be sustained by recently fixed C from the atmosphere (<60 years), despite stream DOC, CO2, and CH4 primarily being sourced from deep peat horizons (2–4 m) near the mire's outlet. In fact, the 14C content of DOC, CO2, and CH4 across the entire peat profile was considerably enriched with postbomb C compared with the solid peat material. Overall, our results demonstrate little to no mobilization of ancient C stocks from this boreal peatland and a relatively large resilience of the source of aquatic C export to forecasted hydroclimatic changes.
  •  
2.
  • Campeau, Audrey, et al. (författare)
  • Stable carbon isotopes reveal soil - stream DIC linkages in contrasting headwater catchments
  • 2018
  • Ingår i: Journal of Geophysical Research - Biogeosciences. - : American Geophysical Union (AGU). - 2169-8953 .- 2169-8961. ; 123:1, s. 149-167
  • Tidskriftsartikel (refereegranskat)abstract
    • Large CO2 evasion to the atmosphere occurs as dissolved inorganic carbon (DIC) is transported from soils to streams. While this physical process has been the focus of multiple studies, less is known about the underlying biogeochemical transformations that accompany this transfer of C from soils to streams. Here we used patterns in stream water and groundwater C-13-DIC values within three headwater catchments with contrasting land cover to identify the sources and processes regulating DIC during its transport. We found that although considerable CO2 evasion occurs as DIC is transported from soils to streams, there were also other processes affecting the DIC pool. Methane production and mixing of C sources, associated with different types and spatial distribution of peat-rich areas within each catchment, had a significant influence on the C-13-DIC values in both soils and streams. These processes represent an additional control on C-13-DIC values and the catchment-scale cycling of DIC across different northern landscape types. The results from this study demonstrate that the transport of DIC from soils to streams results in more than just rapid CO2 evasion to the atmosphere but also represents a channel of C transformation, which questions some of our current conceptualizations of C cycling at the landscape scale. Plain Language Summary Large carbon dioxide emission to the atmosphere occurs as rainwater percolates through soils and into streams. This physical process is important for the global carbon cycle and has been the focus of multiple studies. However, less is known about the underlying processes that accompanies this transfer of carbon dioxide from soils to streams. Here we analyze the stable isotope composition of soil and stream carbon dioxide and demonstrate that methane production and mixing of carbon sources also occur in soils and streams. These processes were linked to different types and configurations of peat-rich areas, for example, bogs, fens, and riparian zones, found within each of the three studied catchments. Our results therefore demonstrate that the export of carbon dioxide from soils to streams not only results in emissions to the atmosphere but also represents a channel of transformation. This questions some of our current conceptualization of the catchment-scale cycling of carbon dioxide.
  •  
3.
  • Noumonvi, Koffi Dodji, et al. (författare)
  • The Kulbäcksliden research infrastructure : a unique setting for northern peatland studies
  • 2023
  • Ingår i: Frontiers in Earth Science. - : Frontiers Media S.A.. - 2296-6463. ; 11
  • Forskningsöversikt (refereegranskat)abstract
    • Boreal peatlands represent a biogeochemically unique and diverse environment in high-latitude landscape. They represent a long-term globally significant sink for carbon dioxide and a source of methane, hence playing an important role in regulating the global climate. There is an increasing interest in deciphering peatland biogeochemical processes to improve our understanding of how anthropogenic and climate change effects regulate the peatland biogeochemistry and greenhouse gas balances. At present, most studies investigating land-atmosphere exchanges of peatland ecosystems are commonly based on single-tower setups, which require the assumption of homogeneous conditions during upscaling to the landscape. However, the spatial organization of peatland complexes might feature large heterogeneity due to its varying underlying topography and vegetation composition. Little is known about how well single site studies represent the spatial variations of biogeochemical processes across entire peatland complexes. The recently established Kulbäcksliden Research Infrastructure (KRI) includes five peatland study sites located less than 3 km apart, thus providing a unique opportunity to explore the spatial variation in ecosystem-scale processes across a typical boreal peatland complex. All KRI sites are equipped with eddy covariance flux towers combined with installations for detailed monitoring of biotic and abiotic variables, as well as catchment-scale hydrology and hydrochemistry. Here, we review studies that were conducted in the Kulbäcksliden area and provide a description of the site characteristics as well as the instrumentation available at the KRI. We highlight the value of long-term infrastructures with ecosystem-scale and replicated experimental sites to advance our understanding of peatland biogeochemistry, hydrology, ecology, and its feedbacks on the environment and climate system.
  •  
4.
  • Öquist, Mats, et al. (författare)
  • The full annual carbon balance of boreal forestsis highly sensitive to precipitation
  • 2014
  • Ingår i: Environmental Science and Technology Letters. - : American Chemical Society (ACS). - 2328-8930. ; 1:7, s. 315-319
  • Tidskriftsartikel (refereegranskat)abstract
    • The boreal forest carbon balance is predicted to be particularly sensitive to climate change. Carbon balance estimates of these biomes stem mainly from eddy-covariance measurements of net ecosystem exchange (NEE). However, a full net ecosystem carbon balance (NECB) must include the lateral carbon export (LCE) through discharge. We show that annual LCE at a boreal forest site ranged from 4 to 28%, averaging 11% (standard deviation of 8%), of annual NEE over 13 years. Annual LCE and NEE are strongly anticorrelated; years with weak NEE coincide with high LCE. The decreased NEE in response to increased precipitation is caused by a reduction in the amount of incoming radiation caused by clouds. If our finding is also valid for other sites, it implies that increased precipitation at high latitudes may shift forest NECB in large areas of the boreal biome. Our results call for future analysis of this dual effect of precipitation on NEE and LCE.
  •  
5.
  • Chi, Jinshu, et al. (författare)
  • The carbon balance of a managed boreal landscape measured from a tall tower in northern Sweden
  • 2019
  • Ingår i: Agricultural and Forest Meteorology. - : Elsevier BV. - 0168-1923 .- 1873-2240. ; 274, s. 29-41
  • Tidskriftsartikel (refereegranskat)abstract
    • Boreal forests exchange large amounts of carbon dioxide (CO2) with the atmosphere. A managed boreal landscape usually comprises various potential CO2 sinks and sources across forest stands of varying age classes, clear-cut areas, mires, and lakes. Due to this heterogeneity and complexity, large uncertainties exist regarding the net CO2 balance at the landscape scale. In this study, we present the first estimate of the net CO2 exchange over a managed boreal landscape (∼68 km2) in northern Sweden, based on tall tower eddy covariance measurements. Our results suggest that from March 1, 2016 to February 28, 2018, the heterogeneous landscape was a net CO2 sink with a 2-year mean uptake of −87 ± 6 g C m−2 yr−1. Due to an earlier and warmer spring and sunnier autumn, the landscape was a stronger CO2 sink during the first year (−122 ± 8 g C m−2) compared to the second year (−52 ± 9 g C m−2). Footprint analysis shows that 87% of the CO2 flux measurements originated from forests, whereas mires, clear-cuts, lakes, and grassland contributed 11%, 1%, 0.7%, and 0.2%, respectively. Altogether, the CO2 sink strength of the heterogeneous landscape was up to 38% lower compared to the sink strength of a mature stand surrounding the tower. Overall, this study suggests that the managed boreal landscape acted as a CO2 sink and advocates tall tower eddy covariance measurements to improve regional carbon budget estimates.
  •  
6.
  • Chi, Jinshu, et al. (författare)
  • The Net Landscape Carbon Balance—Integrating terrestrial and aquatic carbon fluxes in a managed boreal forest landscape in Sweden
  • 2020
  • Ingår i: Global Change Biology. - : Wiley. - 1354-1013 .- 1365-2486. ; 26:4, s. 2353-2367
  • Tidskriftsartikel (refereegranskat)abstract
    • The boreal biome exchanges large amounts of carbon (C) and greenhouse gases (GHGs) with the atmosphere and thus significantly affects the global climate. A managed boreal landscape consists of various sinks and sources of carbon dioxide (CO2), methane (CH4), and dissolved organic and inorganic carbon (DOC and DIC) across forests, mires, lakes, and streams. Due to the spatial heterogeneity, large uncertainties exist regarding the net landscape carbon balance (NLCB). In this study, we compiled terrestrial and aquatic fluxes of CO2, CH4, DOC, DIC, and harvested C obtained from tall-tower eddy covariance measurements, stream monitoring, and remote sensing of biomass stocks for an entire boreal catchment (~68 km2) in Sweden to estimate the NLCB across the land–water–atmosphere continuum. Our results showed that this managed boreal forest landscape was a net C sink (NLCB = 39 g C m−2 year−1) with the landscape–atmosphere CO2 exchange being the dominant component, followed by the C export via harvest and streams. Accounting for the global warming potential of CH4, the landscape was a GHG sink of 237 g CO2-eq m−2 year−1, thus providing a climate-cooling effect. The CH4 flux contribution to the annual GHG budget increased from 0.6% during spring to 3.2% during winter. The aquatic C loss was most significant during spring contributing 8% to the annual NLCB. We further found that abiotic controls (e.g., air temperature and incoming radiation) regulated the temporal variability of the NLCB whereas land cover types (e.g., mire vs. forest) and management practices (e.g., clear-cutting) determined their spatial variability. Our study advocates the need for integrating terrestrial and aquatic fluxes at the landscape scale based on tall-tower eddy covariance measurements combined with biomass stock and stream monitoring to develop a holistic understanding of the NLCB of managed boreal forest landscapes and to better evaluate their potential for mitigating climate change.
  •  
7.
  • Felton, Adam, et al. (författare)
  • Replacing monocultures with mixed-species : Ecosystem service implications of two production forest alternatives in Sweden
  • 2016
  • Ingår i: Ambio. - : Springer Science and Business Media LLC. - 0044-7447 .- 1654-7209. ; 45:Suppl. 2, s. 124-139
  • Tidskriftsartikel (refereegranskat)abstract
    • Whereas there is evidence that mixed-species approaches to production forestry in general can provide positive outcomes relative to monocultures, it is less clear to what extent multiple benefits can be derived from specific mixed-species alternatives. To provide such insights requires evaluations of an encompassing suite of ecosystem services, biodiversity, and forest management considerations provided by specific mixtures and monocultures within a region. Here, we conduct such an assessment in Sweden by contrasting even-aged Norway spruce (Picea abies)-dominated stands, with mixed-species stands of spruce and birch (Betula pendula or B. pubescens), or spruce and Scots pine (Pinus sylvestris). By synthesizing the available evidence, we identify positive outcomes from mixtures including increased biodiversity, water quality, esthetic and recreational values, as well as reduced stand vulnerability to pest and pathogen damage. However, some uncertainties and risks were projected to increase, highlighting the importance of conducting comprehensive interdisciplinary evaluations when assessing the pros and cons of mixtures.
  •  
8.
  • Felton, Adam, et al. (författare)
  • Replacing monocultures with mixed-species stands : Ecosystem service implications of two production forest alternatives in Sweden
  • 2016
  • Ingår i: Ambio. - : Springer Science and Business Media LLC. - 0044-7447 .- 1654-7209. ; 45, s. 124-139
  • Tidskriftsartikel (refereegranskat)abstract
    • Whereas there is evidence that mixed-species approaches to production forestry in general can provide positive outcomes relative to monocultures, it is less clear to what extent multiple benefits can be derived from specific mixed-species alternatives. To provide such insights requires evaluations of an encompassing suite of ecosystem services, biodiversity, and forest management considerations provided by specific mixtures and monocultures within a region. Here, we conduct such an assessment in Sweden by contrasting even-aged Norway spruce (Picea abies)-dominated stands, with mixed-species stands of spruce and birch (Betula pendula or B. pubescens), or spruce and Scots pine (Pinus sylvestris). By synthesizing the available evidence, we identify positive outcomes from mixtures including increased biodiversity, water quality, esthetic and recreational values, as well as reduced stand vulnerability to pest and pathogen damage. However, some uncertainties and risks were projected to increase, highlighting the importance of conducting comprehensive interdisciplinary evaluations when assessing the pros and cons of mixtures.
  •  
9.
  • Klosterhalfen, Anne, et al. (författare)
  • Two-level eddy covariance measurements reduce bias in land-atmosphere exchange estimates over a heterogeneous boreal forest landscape
  • 2023
  • Ingår i: Agricultural and Forest Meteorology. - 0168-1923 .- 1873-2240. ; 339
  • Tidskriftsartikel (refereegranskat)abstract
    • Estimates of land-atmosphere exchanges of carbon, energy, water vapor, and other greenhouse gases based on the eddy covariance (EC) technique rely on the fundamental assumption that the flux footprint area is homogeneous. We investigated the impact of source area heterogeneity on flux estimates in single-level EC measurements over a managed boreal forest landscape. For this purpose, we compared single-level measurements with those from a two-level approach consisting of concurrent EC measurements at 60 and 85 m above the ground. This two-level set-up provided a unique opportunity to obtain nearly congruent diel footprint areas by combining data from the higher and lower levels during day- and nighttime, respectively. We found that the variation in the averaged footprint area between day- and nighttime was reduced by up to 89% in the two-level approach compared to the single-level data at the higher level (85 m). Considering spring, summer, and fall months, the resulting relative potential bias in flux observations due to landscape heterogeneity was highest at short time steps (≤ daily) ranging between 35% and 325% for half-hourly data. During winter months, when stable atmospheric regimes prevailed during day and night, the footprints within the diel course nearly overlapped also at a given single level and hence no improvement of flux estimates was found. The absolute cumulated sums for the study period (excluding winter months) of gross primary production, ecosystem respiration, latent heat, and sensible heat flux were underestimated by about 28%, 52%, 5%, and 3%, respectively, whereas that of net ecosystem CO2 exchange was overestimated by about 109% in the single-level approach. Overall this study suggests that footprint heterogeneity may introduce considerable bias in single-level flux estimates — particularly at short time scales — with large implications for model-data fusion studies, site comparisons, and up- or downscaling of land-atmosphere exchange processes.
  •  
10.
  • Larsson, Anna, et al. (författare)
  • Holocene carbon and nitrogen accumulation rates in a boreal oligotrophic fen
  • 2017
  • Ingår i: Holocene. - : SAGE Publications. - 0959-6836 .- 1477-0911. ; 27, s. 811-821
  • Tidskriftsartikel (refereegranskat)abstract
    • The contemporary role of mires in carbon exchange with the atmosphere is intensely debated. Thus, understanding the variation in Holocene peat accumulation is particularly important. We investigated carbon (C) and nitrogen (N) accumulation rates and their potential controls during the Holocene at the oligotrophic fen Degero Stormyr (64 degrees 11N, 19 degrees 33E, 270 m a.s.l.), Sweden. The peat stratigraphy was dominated by remains of Eriophorum spp. and oligotrophic-mesotrophic Sphagnum spp. The long-term rate of C accumulation (LORCA) was 13.7 +/- 5.5 (SD) g C m(-2) yr(-1), while the long-term rate of N accumulation (LORNA) was 0.28 +/- 0.14 (SD) g N m(-2) yr(-1). Carbon and N accumulation rates exhibited similar variations that coincided with major changes in botanical composition. The botanical composition of the peat also had a major impact on the percentage of amorphous peat (a proxy for degree of decomposition). Bulk C-13 values increased with decreasing C content, which probably reflected the relative increase of C-13 depleted compounds in the peat during decomposition. Different plant groups exhibited different relationships, likely due to different C-13 signatures of initial litters from Eriophorum spp. and Sphagnum spp. The N-15 values increased significantly with decreasing C:N ratio in bulk peat, likely reflecting preferential uptake of N-14 by plants concomitant with nitrogen mineralization. Here, we demonstrate the importance of botanical composition in affecting C and N accumulation rates under a changing climate and suggest that primary production drives the variation in rates of accumulation. Furthermore, we point out the importance of including C-13 and N-15 signatures in the analysis of peat stratigraphies to advance interpretation of Holocene peat growth and decay.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 26
Typ av publikation
tidskriftsartikel (24)
annan publikation (1)
forskningsöversikt (1)
Typ av innehåll
refereegranskat (25)
populärvet., debatt m.m. (1)
Författare/redaktör
Nilsson, Mats (22)
Peichl, Matthias (14)
Lundmark, Tomas (8)
Wallerman, Jörgen (6)
Bishop, Kevin (5)
visa fler...
Lindroth, Anders (5)
Campeau, Audrey (3)
Wallin, Marcus, 1979 ... (3)
Kljun, Natascha (3)
Chi, Jinshu (3)
Larsson, Anna (3)
Öquist, Mats (3)
Buffam, Ishi (2)
Ottosson Löfvenius, ... (2)
Niklasson, Mats (2)
Stenlid, Jan (2)
Nordin, Annika (2)
Ranius, Thomas (2)
Ahlström, Martin (2)
Fransson, Johan, Pro ... (2)
Bergh, Johan (2)
Nilsson, Urban (2)
Holmström, Emma (2)
Keskitalo, E. Carina ... (2)
Björkman, Christer (2)
Boberg, Johanna (2)
Roberge, Jean-Michel (2)
Wallertz, Kristina (2)
Klemedtsson, Leif, 1 ... (2)
Pettersson, Maria (2)
Klemedtsson, Leif (2)
Fransson, Johan E.S. (2)
Sponseller, Ryan A. (2)
Bishop, Kevin, 1960- (1)
Zhu, Wei (1)
Åkerblom, Staffan (1)
Köhler, Stephan (1)
Ericson, Lars (1)
Ågren, Anneli (1)
Gong, Peichen (1)
Kuglerova, Lenka (1)
Felton, Annika (1)
Scholze, Marko (1)
Hasselquist, Niles (1)
Wallin, Marcus B., 1 ... (1)
Wallin, Marcus (1)
Weslien, Per, 1963 (1)
Klapwijk, Maartje (1)
Gerbig, Christoph (1)
visa färre...
Lärosäte
Sveriges Lantbruksuniversitet (22)
Lunds universitet (7)
Uppsala universitet (6)
Umeå universitet (5)
Linnéuniversitetet (5)
Göteborgs universitet (2)
visa fler...
Luleå tekniska universitet (1)
visa färre...
Språk
Engelska (26)
Forskningsämne (UKÄ/SCB)
Naturvetenskap (22)
Lantbruksvetenskap (16)
Samhällsvetenskap (2)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy