SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Nilsson Mats) ;pers:(Nilsson Mats B.)"

Sökning: WFRF:(Nilsson Mats) > Nilsson Mats B.

  • Resultat 1-10 av 11
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Ehnvall, Betty, et al. (författare)
  • Catchment characteristics control boreal mire nutrient regime and vegetation patterns over ~5000 years of landscape development
  • 2023
  • Ingår i: Science of the Total Environment. - : Elsevier. - 0048-9697 .- 1879-1026. ; 895
  • Tidskriftsartikel (refereegranskat)abstract
    • Vegetation holds the key to many properties that make natural mires unique, such as surface microtopography, high biodiversity values, effective carbon sequestration and regulation of water and nutrient fluxes across the landscape. Despite this, landscape controls behind mire vegetation patterns have previously been poorly described at large spatial scales, which limits the understanding of basic drivers underpinning mire ecosystem services. We studied catchment controls on mire nutrient regimes and vegetation patterns using a geographically constrained natural mire chronosequence along the isostatically rising coastline in Northern Sweden. By comparing mires of different ages, we can partition vegetation patterns caused by long-term mire succession (<5000 years) and present-day vegetation responses to catchment eco-hydrological settings. We used the remote sensing based normalized difference vegetation index (NDVI) to describe mire vegetation and combined peat physicochemical measures with catchment properties to identify the most important factors that determine mire NDVI. We found strong evidence that mire NDVI depends on nutrient inputs from the catchment area or underlying mineral soil, especially concerning phosphorus and potassium concentrations. Steep mire and catchment slopes, dry conditions and large catchment areas relative to mire areas were associated with higher NDVI. We also found long-term successional patterns, with lower NDVI in older mires. Importantly, the NDVI should be used to describe mire vegetation patterns in open mires if the focus is on surface vegetation, since the canopy cover in tree-covered mires completely dominated the NDVI signal. With our study approach, we can quantitatively describe the connection between landscape properties and mire nutrient regime. Our results confirm that mire vegetation responds to the upslope catchment area, but importantly, also suggest that mire and catchment aging can override the role of catchment influence. This effect was clear across mires of all ages, but was strongest in younger mires.
  •  
2.
  • Noumonvi, Koffi Dodji, et al. (författare)
  • The Kulbäcksliden research infrastructure : a unique setting for northern peatland studies
  • 2023
  • Ingår i: Frontiers in Earth Science. - : Frontiers Media S.A.. - 2296-6463. ; 11
  • Forskningsöversikt (refereegranskat)abstract
    • Boreal peatlands represent a biogeochemically unique and diverse environment in high-latitude landscape. They represent a long-term globally significant sink for carbon dioxide and a source of methane, hence playing an important role in regulating the global climate. There is an increasing interest in deciphering peatland biogeochemical processes to improve our understanding of how anthropogenic and climate change effects regulate the peatland biogeochemistry and greenhouse gas balances. At present, most studies investigating land-atmosphere exchanges of peatland ecosystems are commonly based on single-tower setups, which require the assumption of homogeneous conditions during upscaling to the landscape. However, the spatial organization of peatland complexes might feature large heterogeneity due to its varying underlying topography and vegetation composition. Little is known about how well single site studies represent the spatial variations of biogeochemical processes across entire peatland complexes. The recently established Kulbäcksliden Research Infrastructure (KRI) includes five peatland study sites located less than 3 km apart, thus providing a unique opportunity to explore the spatial variation in ecosystem-scale processes across a typical boreal peatland complex. All KRI sites are equipped with eddy covariance flux towers combined with installations for detailed monitoring of biotic and abiotic variables, as well as catchment-scale hydrology and hydrochemistry. Here, we review studies that were conducted in the Kulbäcksliden area and provide a description of the site characteristics as well as the instrumentation available at the KRI. We highlight the value of long-term infrastructures with ecosystem-scale and replicated experimental sites to advance our understanding of peatland biogeochemistry, hydrology, ecology, and its feedbacks on the environment and climate system.
  •  
3.
  • Chang, Kuang Yu, et al. (författare)
  • Substantial hysteresis in emergent temperature sensitivity of global wetland CH4 emissions
  • 2021
  • Ingår i: Nature Communications. - : Springer Science and Business Media LLC. - 2041-1723. ; 12:1, s. 2266-2266
  • Tidskriftsartikel (refereegranskat)abstract
    • Wetland methane (CH4) emissions ([Formula: see text]) are important in global carbon budgets and climate change assessments. Currently, [Formula: see text] projections rely on prescribed static temperature sensitivity that varies among biogeochemical models. Meta-analyses have proposed a consistent [Formula: see text] temperature dependence across spatial scales for use in models; however, site-level studies demonstrate that [Formula: see text] are often controlled by factors beyond temperature. Here, we evaluate the relationship between [Formula: see text] and temperature using observations from the FLUXNET-CH4 database. Measurements collected across the globe show substantial seasonal hysteresis between [Formula: see text] and temperature, suggesting larger [Formula: see text] sensitivity to temperature later in the frost-free season (about 77% of site-years). Results derived from a machine-learning model and several regression models highlight the importance of representing the large spatial and temporal variability within site-years and ecosystem types. Mechanistic advancements in biogeochemical model parameterization and detailed measurements in factors modulating CH4 production are thus needed to improve global CH4 budget assessments.
  •  
4.
  • Ehlers, Ina, 1984-, et al. (författare)
  • Quantification of a metabolic shift towards photosynthesisin C3 plants driven by 20th-century CO2 rise
  • Annan publikation (övrigt vetenskapligt/konstnärligt)abstract
    • Terrestrial vegetation currently absorbs approximately a third of the annual anthropogenic CO2 emissions, mitigating the rise of atmospheric CO2. However,terrestrial net primary production is highly sensitive to atmospheric [CO2] and associated climatic changes. In C3-plants, which dominate terrestrial vegetation, netphotosynthesis depends on the ratio between gross photosynthesis and photorespiration, which strongly depends on [CO2]. However, our knowledge of feedbacks betweenterrestrial biomes and increasing atmospheric [CO2] is nearly entirely based on atmospheric inversion models and manipulation experiments, which do not reveal physiological mechanisms or are limited in duration and to step increases in [CO2]. By applying novel NMR (Nuclear Magnetic Resonance) spectroscopy methodology we examine isotopomer ratios of plant carbohydrates to probe shifts in the photosynthesis/photorespiration ratio in C3 plants over more than a century. Using herbarium samples of natural vascular plant species, crops and a Sphagnum species, we detect a consistent 35% increase in the 2photosynthesis/photorespiration ratio in responseto the ~100 ppm CO2 increase between approximately 1900 and 2013, with no evidencefor feedback regulation by the plants. Our data provide direct quantitative information on the “CO2 fertilization effect” over century time scales, thus addressing a major uncertainty in Earth system models, enabling improved predictions of the future [CO2] sink strength of terrestrial ecosystems. Further, relating the detected metabolic shift in crop plants to historic yield trends indicates that only a fraction of the increased net photosynthesis has translated into increased yield. Our results also demonstrate that archives of plant material contain metabolic information embedded in their isotopomer ratios covering centuries, bridging a fundamental gap between experimental plant science and paleoenvironmental studies.
  •  
5.
  •  
6.
  •  
7.
  • Klosterhalfen, Anne, et al. (författare)
  • Two-level eddy covariance measurements reduce bias in land-atmosphere exchange estimates over a heterogeneous boreal forest landscape
  • 2023
  • Ingår i: Agricultural and Forest Meteorology. - 0168-1923 .- 1873-2240. ; 339
  • Tidskriftsartikel (refereegranskat)abstract
    • Estimates of land-atmosphere exchanges of carbon, energy, water vapor, and other greenhouse gases based on the eddy covariance (EC) technique rely on the fundamental assumption that the flux footprint area is homogeneous. We investigated the impact of source area heterogeneity on flux estimates in single-level EC measurements over a managed boreal forest landscape. For this purpose, we compared single-level measurements with those from a two-level approach consisting of concurrent EC measurements at 60 and 85 m above the ground. This two-level set-up provided a unique opportunity to obtain nearly congruent diel footprint areas by combining data from the higher and lower levels during day- and nighttime, respectively. We found that the variation in the averaged footprint area between day- and nighttime was reduced by up to 89% in the two-level approach compared to the single-level data at the higher level (85 m). Considering spring, summer, and fall months, the resulting relative potential bias in flux observations due to landscape heterogeneity was highest at short time steps (≤ daily) ranging between 35% and 325% for half-hourly data. During winter months, when stable atmospheric regimes prevailed during day and night, the footprints within the diel course nearly overlapped also at a given single level and hence no improvement of flux estimates was found. The absolute cumulated sums for the study period (excluding winter months) of gross primary production, ecosystem respiration, latent heat, and sensible heat flux were underestimated by about 28%, 52%, 5%, and 3%, respectively, whereas that of net ecosystem CO2 exchange was overestimated by about 109% in the single-level approach. Overall this study suggests that footprint heterogeneity may introduce considerable bias in single-level flux estimates — particularly at short time scales — with large implications for model-data fusion studies, site comparisons, and up- or downscaling of land-atmosphere exchange processes.
  •  
8.
  • Knox, Sara H., et al. (författare)
  • FLUXNET-CH4 Synthesis Activity : Objectives, Observations, and Future Directions
  • 2019
  • Ingår i: Bulletin of The American Meteorological Society - (BAMS). - 0003-0007 .- 1520-0477. ; 100:12, s. 2607-2632
  • Tidskriftsartikel (refereegranskat)abstract
    • This paper describes the formation of, and initial results for, a new FLUXNET coordination network for ecosystem-scale methane (CH4) measurements at 60 sites globally, organized by the Global Carbon Project in partnership with other initiatives and regional flux tower networks. The objectives of the effort are presented along with an overview of the coverage of eddy covariance (EC) CH4 flux measurements globally, initial results comparing CH4 fluxes across the sites, and future research directions and needs. Annual estimates of net CH4 fluxes across sites ranged from -0.2 +/- 0.02 g C m(-2) yr(-1) for an upland forest site to 114.9 +/- 13.4 g C m(-2) yr(-1) for an estuarine freshwater marsh, with fluxes exceeding 40 g C m(-2) yr(-1) at multiple sites. Average annual soil and air temperatures were found to be the strongest predictor of annual CH4 flux across wetland sites globally. Water table position was positively correlated with annual CH4 emissions, although only for wetland sites that were not consistently inundated throughout the year. The ratio of annual CH4 fluxes to ecosystem respiration increased significantly with mean site temperature. Uncertainties in annual CH4 estimates due to gap-filling and random errors were on average +/- 1.6 g C m(-2) yr(-1) at 95% confidence, with the relative error decreasing exponentially with increasing flux magnitude across sites. Through the analysis and synthesis of a growing EC CH4 flux database, the controls on ecosystem CH4 fluxes can be better understood, used to inform and validate Earth system models, and reconcile differences between land surface model- and atmospheric-based estimates of CH4 emissions.
  •  
9.
  • Moor, Helen, 1981-, et al. (författare)
  • Towards a trait-based ecology of wetland vegetation
  • Annan publikation (övrigt vetenskapligt/konstnärligt)abstract
    • 1. Functional traits mechanistically capture plant responses to environmental gradients as well as plant effects on ecosystem functioning. Yet most trait-based theory stems from terrestrial systems and extension to other habitats can provide new insights.2. Wetlands differ from terrestrial systems in conditions (e.g. soil water saturation, anoxia, pH extremes), plant adaptations (e.g. aerenchyma, clonality, ubiquity of bryophytes) and important processes (e.g. denitrification, peat accumulation, methane emission). Wetland plant adaptations and trait (co-)variation can be situated along major plant trait trade-off axes (e.g. the resource economics spectrum), but soil saturation represents a complex stress gradient beyond a simple extension of commonly studied water availability gradients.3. Traits that affect ecosystem functioning overlap with patterns in terrestrial systems. But wetland-specific traits that mediate plant effects on soil redox conditions, microbial communities and on water flow, as well as trait spectra of mosses, vary among wetland types.4. Synthesis: With increasing availability of quantitative plant traits a trait-based ecology of wetlands is emerging, with the potential to advance process-based understanding and prediction. We provide an interactive cause-and-effect framework that may guide research efforts to disentangle the multiple interacting processes involved in scaling from environmental conditions to ecosystem functioning via plant communities. 
  •  
10.
  • Piatkowski, Bryan T., et al. (författare)
  • Draft Metagenome Sequences of the Sphagnum (Peat Moss) Microbiome from Ambient and Warmed Environments across Europe
  • 2022
  • Ingår i: Microbiology Resource Announcements. - : American Society for Microbiology. - 2576-098X. ; 11:10
  • Tidskriftsartikel (refereegranskat)abstract
    • We present 49 metagenome assemblies of the microbiome associated with Sphagnum (peat moss) collected from ambient, artificially warmed, and geothermally warmed conditions across Europe. These data will enable further research regarding the impact of climate change on plant-microbe symbiosis, ecology, and ecosystem functioning of northern peatland ecosystems.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 11
Typ av publikation
tidskriftsartikel (6)
annan publikation (4)
forskningsöversikt (1)
Typ av innehåll
refereegranskat (7)
övrigt vetenskapligt/konstnärligt (4)
Författare/redaktör
Peichl, Matthias (5)
Sachs, Torsten (3)
Desai, Ankur R. (3)
Baldocchi, Dennis (3)
Goeckede, Mathias (3)
visa fler...
McNicol, Gavin (3)
Helbig, Manuel (3)
Friborg, Thomas (3)
Lohila, Annalea (3)
Bohrer, Gil (3)
Chu, Housen (3)
Euskirchen, Eugenie (3)
Iwata, Hiroki (3)
Schmid, Hans Peter (3)
Sonnentag, Oliver (3)
Ueyama, Masahito (3)
Laudon, Hjalmar (2)
Lundberg, Erik (2)
Andersson, Agneta (2)
Torn, Margaret S. (2)
Papale, Dario (2)
Skyllberg, Ulf (2)
Björn, Erik (2)
Jackson, Robert B. (2)
Poulter, Benjamin (2)
Zhang, Zhen (2)
Krauss, Ken W. (2)
Vargas, Rodrigo (2)
Ward, Eric J. (2)
Runkle, Benjamin R.K ... (2)
Cescatti, Alessandro (2)
Tuittila, Eeva-Stiin ... (2)
Riley, William J. (2)
Mammarella, Ivan (2)
Aurela, Mika (2)
Chen, Jiquan (2)
Noormets, Asko (2)
Campbell, David (2)
Jonsson, Sofi, 1984- (2)
Knox, Sara H. (2)
Hirano, Takashi (2)
Kang, Minseok (2)
Mitra, Bhaskar (2)
Oechel, Walter C. (2)
Reba, Michele L. (2)
Ryu, Youngryel (2)
Shurpali, Narasinha (2)
Trotta, Carlo (2)
Vesala, Timo (2)
visa färre...
Lärosäte
Umeå universitet (5)
Stockholms universitet (3)
Uppsala universitet (2)
Lunds universitet (2)
Sveriges Lantbruksuniversitet (2)
Språk
Engelska (11)
Forskningsämne (UKÄ/SCB)
Naturvetenskap (9)
Lantbruksvetenskap (1)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy