SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Nilsson Mats) ;pers:(Nordebo Sven)"

Sökning: WFRF:(Nilsson Mats) > Nordebo Sven

  • Resultat 1-10 av 26
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Gustafsson, Stefan, et al. (författare)
  • Electromagnetic dispersion modeling and measurements for HVDC power cables
  • 2014
  • Ingår i: IEEE Transactions on Power Delivery. - : IEEE Press. - 0885-8977 .- 1937-4208. ; 29:6, s. 2439-2447
  • Tidskriftsartikel (refereegranskat)abstract
    • This paper provides a general framework for electromagnetic (EM) modeling, sensitivity analysis, computation, and measurements regarding the wave propagation characteristics of high-voltage direct-current (HVDC) power cables. The modeling is motivated by the potential use with transient analysis, partial-discharge measurements, fault localization and monitoring, and is focused on very long (10 km or more) HVDC power cables with transients propagating in the low-frequency regime of about 0-100 kHz. An exact dispersion relation is formulated together with a discussion on practical aspects regarding the computation of the propagation constant. Experimental time-domain measurement data from an 80-km-long HVDC power cable are used to validate the electromagnetic model, and a mismatch calibration procedure is devised to account for the connection between the measurement equipment and the cable. Quantitative sensitivity analysis is devised to study the impact of parameter uncertainty on wave propagation characteristics. The sensitivity analysis can be used to study how material choices affect the propagation characteristics, and to indicate which material parameters need to be identified accurately in order to achieve accurate fault localization. The analysis shows that the sensitivity of the propagation constant due to a change in the conductivity in the three metallic layers (the inner conductor, the intermediate lead shield, and the outer steel armor) is comparable to the sensitivity with respect to the permittivity of the insulating layer. Hence, proper modeling of the EM fields inside the metallic layers is crucial in the low-frequency regime of 0-100 kHz.
  •  
2.
  • Nordebo, Sven, et al. (författare)
  • Electromagnetic dispersion modeling and measurements for HVDC power cables
  • 2011
  • Rapport (övrigt vetenskapligt/konstnärligt)abstract
    • This paper provides a general framework for electromagnetic modeling, computation and measurements regarding the wave propagation characteristics of High-Voltage Direct Current (HVDC) power cables. The modeling is focused on very long (10 km or more) HVDC power cables and the relevant frequency range is therefore in the low-frequency regime of about 0-100 kHz. An exact dispersion relation is formulated together with a discussion on practical aspects regarding the computation of the propagation constant and the related characteristic impedance. Experimental time-domain measurement data from an 80 km long HVDC power cable is used to validate the model. It is concluded that a single-mode transmission line model is not adequate to account for the mismatch between the power cable and the instrumentation. A mismatch calibration procedure is therefore devised to account for the connection between the measurement equipment and the cable. A dispersion model is thus obtained that is accurate for early times of pulse arrival. To highlight the potential of accurate electromagnetic modeling, an example of high-resolution length-estimation is discussed and analyzed using statistical methods based on the Cramer-Rao lower bound. The analysis reveals that the estimation accuracy based on the present model (and its related model error) is in the order of 100 m for an 80 km long power cable, and that the potential accuracy using a perfect model based on the given measurement data is in the order of centimeters.
  •  
3.
  • Nordebo, Sven, et al. (författare)
  • Low-frequency dispersion characteristics of a multilayered coaxial cable
  • 2013
  • Ingår i: Journal of Engineering Mathematics. - : Springer Netherlands. - 0022-0833 .- 1573-2703. ; 83:1, s. 169-184
  • Tidskriftsartikel (refereegranskat)abstract
    • This paper provides an exact asymptotic analysis regarding the low-frequency dispersion characteristics of a multilayered coaxial cable. A layer-recursive description of the dispersion function is derived that is well suited for asymptotic analysis. The recursion is based on two well-behaved (meromorphic) subdeterminants defined by a perfectly electrically conducting (PEC) and a perfectly magnetically conducting termination, respectively. For an open waveguide structure, the dispersion function is a combination of two such functions, and there is only one branch point that is related to the exterior domain. It is shown that if there is one isolating layer and a PEC outer shield, then the classical Weierstrass preparation theorem can be used to prove that the low-frequency behavior of the propagation constant is governed by the square root of the complex frequency, and an exact analytical expression for the dominating term of the asymptotic expansion is derived. It is furthermore shown that the same asymptotic expansion is valid to its lowest order even if the outer shield has finite conductivity and there is an infinite exterior region with finite nonzero conductivity. As a practical application of the theory, a high-voltage direct current (HVDC) power cable is analyzed and a numerical solution to the dispersion relation is validated by comparisons with the asymptotic analysis. The comparison reveals that the low-frequency dispersion characteristics of the power cable is very complicated and a first-order asymptotic approximation is valid only at extremely low frequencies (below 1 Hz). It is noted that the only way to come to this conclusion is to actually perform the asymptotic analysis. Hence, for practical modeling purposes, such as with fault localization, an accurate numerical solution to the dispersion relation is necessary and the asymptotic analysis is useful as a validation tool.
  •  
4.
  •  
5.
  • Nordebo, Sven, et al. (författare)
  • Wave modeling and fault localization for underwater power cables
  • 2011
  • Ingår i: 2011 IEEE-APS Topical Conference on Antennas and Propagation in Wireless Communications (APWC). - : IEEE Press. - 9781457700460 ; , s. 698-701
  • Konferensbidrag (refereegranskat)abstract
    • This paper describes some preliminary results regarding Time-Domain pulse Reflection (TDR) measurements and modeling performed on the Baltic Cable submarine HVDC link between southern Sweden and northern Germany. The measurements were conducted in collaboration between the Linnaeus University, Lund University, Baltic Cable AB and ABB High Voltage Cables AB, and is part of the research project: “Fundamental wave modeling for signal estimation on lossy transmission lines”. Preliminary results on measurements and modeling are included here, as well as a first numerical study regarding the low-frequency dispersion characteristics of power cables. The numerical study shows that the finite conductivity of the cable lead shield has a great impact on the losses at low frequencies (0-1 kHz), and that the low-frequency asymptotics of the propagation constant is consistent with common propagation models based on the skin-effect.
  •  
6.
  • Gustafsson, Stefan, et al. (författare)
  • Wave propagation characteristics and model uncertainties for HVDC power cables
  • 2015
  • Ingår i: IEEE Transactions on Power Delivery. - : IEEE Press. - 0885-8977 .- 1937-4208. ; 30:6, s. 2527-2534
  • Tidskriftsartikel (refereegranskat)abstract
    • This paper presents a stable and efficient fullwave cable model and a detailed study of the relatedmodel uncertainties regarding the wave propagation characteristics of very long HVDC power cables at low frequencies. The model can be used to predict the dispersion characteristics of the cable with respect to its electromagnetic parameters, or as an inverse problem to estimate some parameters of the cable (armour permeability, metal layer conductivities, temperature, length, etc.) based on measurements. The electromagnetic model is based on a magnetic frill generator that can be calibrated to the current measured at the input of the cable, and a layer recursive computation of the axial-symmetric fields. Measurements of pulse propagation on an 82 km long HVDC power cable over a bandwidth of 100 kHz have been used to validate the model. The main conclusion of the study is that the conductivity (and thus the temperature) of the conductor and the lead sheath are of utmost importance to achieve an accurate model. At the same time, some parameters are in principle insignificant regarding the dispersion characteristics in the low-frequency regime, such as the permittivity and the conductivity of the semi-conducting screens. The paper contains an investigation and a discussion on the electromagnetic properties of all layers of a typical HVDC power cable.
  •  
7.
  • Ivanenko, Yevhen (författare)
  • Optimization and Physical Bounds for Passive and Non-passive Systems
  • 2019
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • Physical bounds in electromagnetic field theory have been of interest for more than a decade. Considering electromagnetic structures from the system theory perspective, as systems satisfying linearity, time-invariance, causality and passivity, it is possible to characterize their transfer functions via Herglotz functions. Herglotz functions are useful in modeling of passive systems with applications in mathematical physics, engineering, and modeling of wave phenomena in materials and scattering. Physical bounds on passive systems can be derived in the form of sum rules, which are based on low- and high-frequency asymptotics of the corresponding Herglotz functions. These bounds provide an insight into factors limiting the performance of a given system, as well as the knowledge about possibilities to improve a desired system from a design point of view. However, the asymptotics of the Herglotz functions do not always exist for a given system, and thus a new method for determination of physical bounds is required. In Papers I–II of this thesis, a rigorous mathematical framework for a convex optimization approach based on general weighted Lp-norms, 1≤p≤∞, is introduced. The developed framework is used to approximate a desired system response, and to determine an optimal performance in realization of a system satisfying the target requirement. The approximation is carried out using Herglotz functions, B-splines, and convex optimization. Papers III–IV of this thesis concern modeling and determination of optimal performance bounds for causal, but not passive systems. To model them, a new class of functions, the quasi-Herglotz functions, is introduced. The new functions are defined as differences of two Herglotz functions and preserve the majority of the properties of Herglotz functions useful for the mathematical framework based on convex optimization. We consider modeling of gain media with desired properties as a causal system, which can be active over certain frequencies or  frequency intervals.  Here, sum rules can also be used under certain assumptions.In Papers V–VII of this thesis, the optical theorem for scatterers immersed in lossy media is revisited. Two versions of the optical theorem are derived: one based on internal equivalent currents and the other based on external fields in terms of a T-matrix formalism, respectively. The theorems are exploited to derive fundamental bounds on absorption by using elementary optimization techniques. The theory has a potential impact in applications where the surrounding losses cannot be neglected, e.g., in medicine, plasmonic photothermal therapy, radio frequency absorption of gold nanoparticle suspensions, etc.  In addition to this, a new method for detection of electrophoretic resonances in a material with Drude-type of dispersion, which is placed in a straight waveguide, is proposed.
  •  
8.
  • Ivanenko, Yevhen, et al. (författare)
  • Passive Approximation and Optimization Using B-Splines
  • 2019
  • Ingår i: SIAM Journal on Applied Mathematics. - : SIAM PUBLICATIONS. - 0036-1399 .- 1095-712X. ; 79:1, s. 436-458
  • Tidskriftsartikel (refereegranskat)abstract
    • A passive approximation problem is formulated where the target function is an arbitrary complex-valued continuous function defined on an approximation domain consisting of a finite union of closed and bounded intervals on the real axis. The norm used is a weighted L-p-norm where 1 <= p <= infinity. The approximating functions are Herglotz functions generated by a measure with Holder continuous density in an arbitrary neighborhood of the approximation domain. Hence, the imaginary and the real parts of the approximating functions are Holder continuous functions given by the density of the measure and its Hilbert transform, respectively. In practice, it is useful to employ finite B-spline expansions to represent the generating measure. The corresponding approximation problem can then be posed as a finite-dimensional convex optimization problem which is amenable for numerical solution. A constructive proof is given here showing that the convex cone of approximating functions generated by finite uniform B-spline expansions of fixed arbitrary order (linear, quadratic, cubic, etc.) is dense in the convex cone of Herglotz functions which are locally Holder continuous in a neighborhood of the approximation domain, as mentioned above. As an illustration, typical physical application examples are included regarding the passive approximation and optimization of a linear system having metamaterial characteristics, as well as passive realization of optimal absorption of a dielectric small sphere over a finite bandwidth.
  •  
9.
  • Ivanenko, Yevhen, et al. (författare)
  • Passive approximation and optimization with B-splines
  • 2017
  • Rapport (övrigt vetenskapligt/konstnärligt)abstract
    • A passive approximation problem is formulated where the target function is an arbitrary complex valued continuous function defined on an approximation domain consisting of a closed interval of the real axis. The approximating function is any Herglotz function with a generating measure that is absolutely continuous with Hölder continuous density in an arbitrary neighborhood of the approximation domain. The norm used is induced by any of the standard Lp-norms where 1 ≤ p ≤ ∞. The problem of interest is to study the convergence properties of simple Herglotz functions where the generating measures are given by finite B-spline expansions, and where the real part of the approximating functions are obtained via the Hilbert transform. In practice, such approximations are readily obtained as the solution to a finite- dimensional convex optimization problem. A constructive convergence proof is given in the case with linear B-splines, which is valid for all Lp-norms with 1 ≤ p ≤ ∞. A number of useful analytical expressions are provided regarding general B-splines and their Hilbert transforms. A typical physical application example is given regarding the passive approximation of a linear system having metamaterial characteristics. Finally, the flexibility of the optimization approach is illustrated with an example concerning the estimation of dielectric material parameters based on given dispersion data. 
  •  
10.
  • Nordebo, Sven, et al. (författare)
  • A Green's function approach to Fisher information analysis and preconditioning in microwave tomography
  • 2010
  • Ingår i: Inverse Problems in Science and Engineering. - : Informa UK Limited. - 1741-5977 .- 1741-5985. ; 18:8, s. 1043-1063
  • Tidskriftsartikel (refereegranskat)abstract
    • The Fisher Information Integral Operator (FIO) and related sensitivity analysis is formulated in a variational framework that is suitable for analytical Green's function and gradient-based approaches in microwave tomography. The main application considered here is for parameter sensitivity analysis and related preconditioning for gradient-based quasi-Newton inverse scattering algorithms. In particular, the Fisher information analysis can be used as a basic principle yielding a systematic approach to robust preconditioning, where the diagonal elements of the FIO kernel are used as targets for sensitivity equalization. The infinite-dimensional formulation has several practical advantages over the finite-dimensional Fisher Information Matrix (FIM) analysis approach. In particular, the FIO approach avoids the need of making a priori assumptions about the underlying discretization of the material such as the shape, orientation and positions of the assumed image pixels. Furthermore, the integral operator and its spectrum can be efficiently approximated by using suitable quadrature methods for numerical integration. The eigenfunctions of the integral operator, corresponding to the identifiable parameters via the significant eigenvalues and the corresponding Cramr-Rao bounds, constitute a suitable global basis for sensitivity and resolution analysis. As a generic numerical example, a two-dimensional inverse electromagnetic scattering problem is analysed and illustrates the spectral decomposition and the related resolution analysis. As an application example in microwave tomography, a simulation study has been performed to illustrate the parameter sensitivity analysis and to demonstrate the effect of the related preconditioning for gradient-based quasi-Newton inverse scattering algorithms.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 26

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy