SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Nilsson Ulrika) srt2:(2005-2009);pers:(Lewén Anders)"

Sökning: WFRF:(Nilsson Ulrika) > (2005-2009) > Lewén Anders

  • Resultat 1-2 av 2
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Wallenquist, Ulrika, 1975-, et al. (författare)
  • Grafted neural progenitors migrate and form neurons after experimental traumatic brain injury
  • 2009
  • Ingår i: Restorative Neurology and Neuroscience. - Amsterdam : IOS Press. - 0922-6028 .- 1878-3627. ; 27:4, s. 323-334
  • Tidskriftsartikel (refereegranskat)abstract
    • PURPOSENeural stem and progenitor cells (NSPC) generate neurons and glia, a feature that makes them attractive for cell replacement therapies. However, efforts to transplant neural progenitors in animal models of brain injury typically result in high cell mortality and poor neuronal differentiation.METHODSIn an attempt to improve the outcome for grafted NSPC after controlled cortical impact we transplanted Enhanced Green Fluorescent Protein (EGFP)-positive NSPC into the contra lateral ventricle of mice one week after injury.RESULTSGrafted EGFP-NSPC readily migrated to the injured hemisphere where we analyzed the proportion of progenitors and differentiated progeny at different time points. Transplantation directly into the injured parenchyma, resulted in few brains with detectable EGFP-NSPC. On the contrary, in more than 90% of the mice that received a transplant into the lateral ventricle detectable EGFP-positive cells were found. The cells were integrated into the lateral ventricle wall of the un-injured hemisphere, throughout the corpus callosum, and in the cortical perilesional area. At one-week post transplantation, grafted cells that had migrated to the perilesion area mainly expressed markers of neural progenitors and neurons, while in the corpus callosum and the ventricular lining, grafted cells with a glial fate were more abundant. After 3 months, grafted cells in the perilesion area were less abundant whereas cells that had migrated to the walls of the third- and lateral- ventricle of the injured hemisphere were still detectable, suggesting that the injury site remained a hostile environment.CONCLUSIONTransplantation to the lateral ventricle, presumably for being a neurogenic region, provides a favorable environment improving the outcome for grafted NSPC both in term of their appearance at the cortical site of injury, and their acquisition of neural markers.
  •  
2.
  • Wallenquist, Ulrika, 1975- (författare)
  • Neural Stem and Progenitor Cells as a Tool for Tissue Regeneration
  • 2009
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • Neural stem and progenitor cells (NSPC) can differentiate to neurons and glial cells. NSPC are easily propagated in vitro and are therefore an attractive tool for tissue regeneration. Traumatic brain injury (TBI) is a common cause for death and disabilities. A fundamental problem following TBI is tissue loss. Animal studies aiming at cell replacement have encountered difficulties in achieving sufficient graft survival and differentiation. To improve outcome of grafted cells after experimental TBI (controlled cortical impact, CCI) in mice, we compared two transplantation settings. NSPC were transplanted either directly upon CCI to the injured parenchyma, or one week after injury to the contralateral ventricle. Enhanced survival of transplanted cells and differentiation were seen when cells were deposited in the ventricle. To further enhance cell survival, efforts were made to reduce the inflammatory response to TBI by administration of ibuprofen to mice that had been subjected to CCI. Inflammation was reduced, as monitored by a decrease in inflammatory markers. Cell survival as well as differentiation to early neuroblasts seemed to be improved. To device a 3D system for future transplantation studies, NSPC from different ages were cultured in a hydrogel consisting of hyaluronan and collagen. Cells survived and proliferated in this culturing condition and the greatest neuronal differentiating ability was seen in cells from the newborn mouse brain. NSPC were also used in a model of peripheral nervous system injury, and xeno-transplanted to rats where the dorsal root ganglion had been removed. Cells survived and differentiated to neurons and glia, furthermore demonstrating their usefulness as a tool for tissue regeneration.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-2 av 2

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy