SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Nordberg Karlsson Eva) ;pers:(Pozzo Tania)"

Sökning: WFRF:(Nordberg Karlsson Eva) > Pozzo Tania

  • Resultat 1-10 av 10
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Cabero, Karen, et al. (författare)
  • A cellulolytic Hypocrea strain isolated from South American brave straw produces a modular xylanase.
  • 2012
  • Ingår i: Carbohydrate Research. - : Elsevier BV. - 1873-426X .- 0008-6215. ; 356, s. 215-223
  • Tidskriftsartikel (refereegranskat)abstract
    • Cellulase-producing fungi from the Andean regions in Bolivia, an ecosystem characterized as an extreme arid highland, were studied. Thirty-two isolates were screened for presence of cellulase activity using carboxymethyl cellulose (CMC) as carbon source, and activity was confirmed using a filter paper assay. One isolate, denoted as BLT1C was selected from this screening, and sequence analysis of the internal transcribed spacer (ITS) classified the strain as Hypocrea lixii. The secretome of BLT1C showed high xylanase activity (compared to that of two reference Trichoderma reesei strains) when cultivated using brave straw, an abundant native grass from the area, as carbon source. SDS-PAGE analysis revealed three main protein-bands (18, 32 and 65kDa) and in-gel digestion and mass spectrometry combined with activity analysis showed that these proteins were active xylanases with molecular masses corresponding to (I) a single glycoside hydrolase family 11 catalytic module (18kDa), and (II, III) modular enzymes, with the GH11 catalytic domain connected to a module of unknown function (32kDa) or putatively connected to a GH7 catalytic module (65kDa). The N-terminal sequence of the 65kDa xylanase did not show significant sequence similarities to deposited sequences. The collected data on xylanase activity, molecular mass, GH11-sequence conservation, combined with lack of sequence similarities in the N-terminus show that the 65kDa band corresponds to a novel modular xylanase.
  •  
2.
  • Crespo, Carla, et al. (författare)
  • Caloramator boliviensis sp. nov., a novel thermophilic, ethanol-producing bacterium isolated from a hot spring
  • 2012
  • Ingår i: International Journal of Systematic and Evolutionary Microbiology. - : Microbiology Society. - 1466-5026 .- 1466-5034. ; 62:7, s. 1679-1686
  • Tidskriftsartikel (refereegranskat)abstract
    • A novel moderately thermophilic, anaerobic, ethanol-producing bacterial strain, 45B(T), was isolated from a mixed sediment water sample collected from a hot spring at Potosi, Bolivia. The cells were straight to slightly curved rods, 2.5 μm long and 0.5 μm wide, approximately. The strain was variable to Gram stain, spore-forming and monotrichously flagellated. Growth of the strain was observed at 45-65 °C and at pH 5.5-8.0, at an optimum temperature of 60 °C and pH 6.5. The substrates utilized by the strain 45B(T) were xylose, cellobiose, glucose, arabinose, sucrose, lactose, maltose, fructose, galactose, mannose, glycerol, xylan, carboxy methylcellulose and yeast extract. The main fermentation product from xylose and cellobiose was ethanol (0.70 and 0.45 grams of ethanol per gram of consumed sugar, respectively). Acetate, lactate, propionate, carbon dioxide and hydrogen were also produced in minor quantities. 1,3-propanediol was produced when glycerol-containing medium was supplemented with yeast extract. The major cellular fatty acids were anteiso-C(15:0), C(16:0), iso-C(16:0), C(15:1), iso-C(14:0), C(13:0) and C(14:0). Polar lipids such as DPG, PG, PE, NGL and other 15 unidentified lipids were predominant in the cell. The DNA G+C content of strain 45B(T) was 32.6 mol %. Phylogenetic analysis based on 16S rDNA gene sequence similarity revealed that strain 45B(T) is located within the Gram-type positive Bacillus-Clostridium branch of the phylogenetic tree. On the basis of morphological, physiological properties and phylogenetic analysis, strain 45B(T) represents a novel species, for which the name Caloramator boliviensis sp. nov., is proposed. The type strain is 45B(T) (=DSM 22065(T) =CCUG 57396(T)).
  •  
3.
  • Gräber, Martin, et al. (författare)
  • A novel direct screening method for alkyl glucoside production by glucosidases expressed in E. coli in 96-well plates.
  • 2010
  • Ingår i: Journal of Biotechnology. - : Elsevier BV. - 1873-4863 .- 0168-1656. ; 145, s. 186-192
  • Tidskriftsartikel (refereegranskat)abstract
    • The present work describes the development of a novel direct screening method, assayed in 96-well format, for evaluation of enzymatic alkyl glycoside production in a hexanol water two-phase system. Alkyl glycosides are surfactants with a range of applications and with good biodegradability and low toxicity. Enzymatic synthesis makes it possible to prepare beta-D-glucopyranosides with high purity. In the developed screening assay, hexyl-ss-D-glucopyranoside was chosen as a model product to be synthesised by reversed hydrolysis in a water-hexanol two-phase system. In a first step the model product is produced by glucosidases expressed in E. coli cells in 96 deep well plates. After phase separation, the hexyl-ss-D-glucopyranoside in the organic phase is degraded enzymatically and the released glucose detected spectrophotometrically at 405nm utilizing peroxidase/glucose oxidase, and the reagent 2,2'-azino-bis(3-ethylbenzthiazoline-6-sulphonic acid) (ABTS). The aqueous phase is used to monitor hydrolysis of p-NPG at 405nm, allowing use of a ratio of the two assays to compensate for expression differences. The complete method was used for comparison of two different ss-glucosidases, classified under glycoside hydrolase family 1 and 3, respectively, showing a significant difference in their ability to synthesise hexyl-ss-D-glucopyranoside by reversed hydrolysis.
  •  
4.
  • Gulshan Kazi, Zubaida, et al. (författare)
  • Glycoside hydrolases for extraction and modification of polyphenolic antioxidants
  • 2013
  • Ingår i: Advances in enzyme biotechnology. - New Delhi : Springer India. - 9788132210931 - 9788132210948 ; , s. 9-21
  • Bokkapitel (refereegranskat)abstract
    • Antioxidants are important molecules that are widely used by humans, both as dietary supplements and as additives to different types of products. In this chapter, we review how flavonoids, a class of polyphenolic antioxidants that are often found in glycosylated forms in many natural resources, can be extracted and modified using glycoside hydrolases (GHs). Glycosylation is a fundamental enzymatic process in nature, affecting function of many types of molecules (glycans, proteins, lipids as well as other organic molecules such as the flavonoids). Possibilities to control glycosylation thus mean possibilities to control or modify the function of the molecule. For the flavonoids, glycosylation affect both the antioxidative power and solubility. In this chapter we overview results on in vitro deglycosylation and glycosylation of flavonoids by selected GHs. For optimal enzymatic performance, desired features include a correct specificity for the target, combined with high stability. Poor specificity towards a specific substituent is thus a major drawback for enzymes in particular applications. Efforts to develop the enzymes as conversion tools are reviewed.
  •  
5.
  • Khan, Samiullah, et al. (författare)
  • Aglycone specificity of Thermotoga neapolitana beta-glucosidase 1A modified by mutagenesis, leading to increased catalytic efficiency in quercetin-3-glucoside hydrolysis
  • 2011
  • Ingår i: BMC Biochemistry. - : Springer Science and Business Media LLC. - 1471-2091. ; 12
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: The thermostable beta-glucosidase (TnBgl1A) from Thermotoga neapolitana is a promising biocatalyst for hydrolysis of glucosylated flavonoids and can be coupled to extraction methods using pressurized hot water. Hydrolysis has however been shown to be dependent on the position of the glucosylation on the flavonoid, and e. g. quercetin-3-glucoside (Q3) was hydrolysed slowly. A set of mutants of TnBgl1A were thus created to analyse the influence on the kinetic parameters using the model substrate para-nitrophenyl-beta-D-glucopyranoside (pNPGlc), and screened for hydrolysis of Q3. Results: Structural analysis pinpointed an area in the active site pocket with non-conserved residues between specificity groups in glycoside hydrolase family 1 (GH1). Three residues in this area located on beta-strand 5 (F219, N221, and G222) close to sugar binding sub-site +2 were selected for mutagenesis and amplified in a protocol that introduced a few spontaneous mutations. Eight mutants (four triple: F219L/P165L/M278I, N221S/P165L/M278I, G222Q/P165L/M278I, G222Q/V203M/K214R, two double: F219L/K214R, N221S/P342L and two single: G222M and N221S) were produced in E. coli, and purified to apparent homogeneity. Thermostability, measured as T-m by differential scanning calorimetry (101.9 degrees C for wt), was kept in the mutated variants and significant decrease (Delta T of 5 -10 degrees C) was only observed for the triple mutants. The exchanged residue(s) in the respective mutant resulted in variations in K-M and turnover. The K-M-value was only changed in variants mutated at position 221 (N221S) and was in all cases monitored as a 2-3 x increase for pNPGlc, while the K-M decreased a corresponding extent for Q3. Turnover was only significantly changed using pNPGlc, and was decreased 2-3 x in variants mutated at position 222, while the single, double and triple mutated variants carrying a mutation at position 221 (N221S) increased turnover up to 3.5 x compared to the wild type. Modelling showed that the mutation at position 221, may alter the position of N291 resulting in increased hydrogen bonding of Q3 (at a position corresponding to the +1 subsite) which may explain the decrease in K-M for this substrate. Conclusion: These results show that residues at the +2 subsite are interesting targets for mutagenesis and mutations at these positions can directly or indirectly affect both K-M and turnover. An affinity change, leading to a decreased K-M, can be explained by an altered position of N291, while the changes in turnover are more difficult to explain and may be the result of smaller conformational changes in the active site.
  •  
6.
  • Nordberg Karlsson, Eva, et al. (författare)
  • Differences and similarities in enzymes from the neopullulanase subfamily isolated from thermophilic species
  • 2008
  • Ingår i: Biologia. - : Springer Science and Business Media LLC. - 0006-3088 .- 1336-9563. ; 63:6, s. 1006-1014
  • Konferensbidrag (refereegranskat)abstract
    • Six glycoside hydrolase (GH) family 13 members, classified under the polyspecific neopullulanase subfamily GH13_20 (also termed cyclomaltodextrinase) were analysed. They originate from thermophilic bacterial strains (Anoxybacillus flavithermus, Laceyella sacchari, and Geobacillus thermoleovorans) or from environmental DNA, collected after in situ enrichments in Icelandic hot springs. The genes were isolated following the CODEHOP consensus primer strategy, utilizing the first two of the four conserved sequence regions in GH13. The typical domain structure of GH13 20, including an N-terminal domain (classified as CBM34), the catalytic module composed of the A- and B- domains, and a C- terminal domain, was found in five of the encoded enzymes (abbreviated Amy1, 89, 92, 98 and 132). These five enzymes degraded cyclomaltodextrins (CDs) and starch, while only three, Amy92 (L. sacchari), Amy98 (A. flavithermus) and Amy132 (environmental DNA), also harboured neopullulanase activity. The L. sacchari enzyme was monomeric, but with CD as the preferred substrate, which is an unusual combination. The sixth enzyme (Amy29 from environmental DNA), was composed of the ABC-domains only. Preferred substrate for Amy29 was pullulan, which was degraded to panose, and the enzyme had no detectable activity on CDs. In addition to its different activity pro. le and domain composition, Amy29 also displayed a different conservation (LPKF) in the fifth conserved region (MPKL) proposed to identify the subfamily. All enzymes had apparent temperature optima in the range 50-65 degrees C, while thermostability varied, and was highest for Amy29 with a half-life of 480 min at 80 degrees C. Calcium dependent activity or stability was monitored in four enzymes, but could not be detected for Amy29 or 98. Tightly bound calcium can, however, not be ruled out, and putative calcium ligands were conserved in Amy98.
  •  
7.
  • Plaza, Merichel, et al. (författare)
  • Substituent Effects on in Vitro Antioxidizing Properties, Stability, and Solubility in Flavonoids
  • 2014
  • Ingår i: Journal of Agricultural and Food Chemistry. - : American Chemical Society (ACS). - 0021-8561 .- 1520-5118. ; 62:15, s. 3321-3333
  • Forskningsöversikt (refereegranskat)abstract
    • Antioxidants are widely used by humans, both as dietary supplements and as additives to different types of products. The desired properties of an antioxidant often include a balance between the antioxidizing capacity, stability, and solubility. This review focuses on flavonoids, which are naturally occurring antioxidants, and different common substituent groups on flavonoids and how these affect the properties of the molecules in vitro. Hydroxyl groups on flavonoids are both important for the antioxidizing capacity and key points for further modification resulting in O-methylation, -glycosylation, -sulfation, or -acylation. The effects of O-glycosylation and acylation are discussed as these types of substitutions have been most explored in vitro concerning antioxidizing properties as well as stability and solubility. Possibilities to control the properties by enzymatic acylation and glycosylation are also reviewed, showing that depending on the choice of enzyme and substrate, regioselective results can be obtained, introducing possibilities for more targeted production of antioxidants with predesigned properties.
  •  
8.
  • Pozzo, Tania, et al. (författare)
  • Glycosynthases from Thermotoga neapolitana beta-glucosidase 1A: A comparison of alpha-glucosyl fluoride and in situ-generated alpha-glycosyl formate donors
  • 2014
  • Ingår i: Journal of Molecular Catalysis B: Enzymatic. - : Elsevier BV. - 1873-3158 .- 1381-1177. ; 107, s. 132-139
  • Tidskriftsartikel (refereegranskat)abstract
    • TnBgl1A from the thermophile Thermotoga neapolitana is a dimeric beta-glucosidase that belongs to glycoside hydrolase family 1 (GH1), with hydrolytic activity through the retaining mechanism, and a broad substrate specificity acting on beta-1,4-, beta-1,3- and beta-1,6-linkages over a range of glyco-oligosaccharides. Three variants of the enzyme (TnBgl1A_E349G, TnBgl1A_E349A and TnBgl1A_E349S), mutated at the catalytic nucleophile, were constructed to evaluate their glycosynthase activity towards oligosaccharide synthesis. Two approaches were used for the synthesis reactions, both of which utilized 4-nitrophenyl beta-D-glucopyranoside (4NPGIc) as an acceptor molecule: the first using an alpha-glucosyl fluoride donor at low temperature (35 degrees C) in a classical glycosynthase reaction, and the second by in situ generation of the glycosyl donor with (4NPGIc), where formate served as the exogenous nucleophile under higher temperature (70 degrees C). Using the first approach, TnBgl1A_E349G and TnBgl1A_E349A synthesized disaccharides with beta-1,3-linkages in good yields (up to 61%) after long incubations (15 h). However, the GH1 glycosynthase Bg13_E383A from a mesophilic Streptomyces sp., used as reference enzyme, generated a higher yield at the same temperature with both a shorter reaction time and a lower enzyme concentration. The second approach yielded disaccharides for all three mutants with predominantly beta-1,3-linkages (up to 45%) but also beta-1,4-linkages (up to 12.5%), after 7 h reaction time. The TnBgl1A glycosynthases were also used for glycosylation of flavonoids, using the two described approaches. Quercetin-3-glycoside was tested as an acceptor molecule and the resultant product was quercetin-3,4'-diglycosides in significantly lower yields, indicating that TnBgl1A preferentially selects 4NPGIc as the acceptor. (C) 2014 Elsevier B.V. All rights reserved.
  •  
9.
  • Pozzo, Tania, et al. (författare)
  • Rational design of a thermostable glycoside hydrolase from family 3 introduces β-glycosynthase activity
  • 2017
  • Ingår i: Glycobiology. - : Oxford University Press (OUP). - 1460-2423 .- 0959-6658. ; 27:2, s. 165-175
  • Tidskriftsartikel (refereegranskat)abstract
    • The thermostable β-glucosidase from Thermotoga neapolitana, TnBgl3B, is a monomeric three-domain representative from glycoside hydrolase family 3. By using chemical reactivation with exogenous nucleophiles in previous studies with TnBg13B, the catalytic nucleophile (D242) and corresponding acid/base residue (E458) were determined. Identifying these residues led to the attempt of converting TnBgl3B into a β-glucosynthase, where three nucleophilic variants were created (TnBgl3B_D242G, TnBgl3B_D242A, TnBgl3B_D242S) and all of them failed to exhibit glucosynthase activity. A deeper analysis of the TnBgl3B active site led to the generation of three additional variants, each of which received a single-point mutation. Two of these variants were altered at the -1 subsite (Y210F, W243F) and the third received a substitution near the binding site's aglycone region (N248R). Kinetic evaluation of these three variants revealed that W243F substitution reduced hydrolytic turnover while maintaining KM This key W243F mutation was then introduced into the original nucleophile variants and the resulting double mutants were successfully converted into β-glucosynthases that were assayed using two separate biosynthetic methods. The first reaction used an α-glucosyl fluoride donor with a 4-nitrophenyl-β-d-glucopyranoside (4NPGlc) acceptor, and the second used 4NPGlc as both the donor and acceptor in the presence of the exogenous nucleophile formate. The primary specificity observed was a β-1,3-linked disaccharide product, while a secondary β-1,4-linked disaccharide product was observed with increased incubation times. Additional analysis revealed that substituting quercetin-3-glycoside for the second reaction's acceptor molecule resulted in the successful production of quercetin-3,4'-diglycosides with yields up to 40%.
  •  
10.
  • Pozzo, Tania, et al. (författare)
  • Structural and Functional Analyses of beta-Glucosidase 3B from Thermotoga neapolitana: A Thermostable Three-Domain Representative of Glycoside Hydrolase 3.
  • 2010
  • Ingår i: Journal of Molecular Biology. - : Elsevier BV. - 1089-8638 .- 0022-2836. ; 397, s. 724-739
  • Tidskriftsartikel (refereegranskat)abstract
    • Based on sequence and phylogenetic analyses, glycoside hydrolase (GH) 3 can be divided into several clusters that differ in the length of their primary sequences. However, structural data on representatives of GH3 are still scarce, since only three of their structures are known and only one of them has been thoroughly characterized-that of an exohydrolase from barley. To allow a deeper structural understanding of the GH3 family, we have determined the crystal structure of the thermostable beta-glucosidase from Thermotoga neapolitana, which has potentially important applications in environmentally friendly industrial biosynthesis at a resolution of 2.05 A. Selected active-site mutants have been characterized kinetically, and the structure of the mutant D242A is presented at 2.1 A resolution. Bgl3B from Thermot. neapolitana is the first example of a GH3 glucosidase with a three-domain structure. It is composed of an (alpha/beta)(8) domain similar to a triose phosphate isomerase barrel, a five-stranded alpha/beta sandwich domain (both of which are important for active-site organization), and a C-terminal fibronectin type III domain of unknown function. Remarkably, the direction of the second beta-strand of the triose phosphate isomerase barrel domain is reversed, which has implications for the active-site shape. The active site, at the interface of domains 1 and 2, is much more open to solvent than the corresponding site in the structurally homologous enzyme from barley, and only the -1 site is well defined. The structures, in combination with kinetic studies of active-site variants, allow the identification of essential catalytic residues (the nucleophile D242 and the acid/base E458), as well as other residues at the -1 subsite, including D58 and W243, which, by mutagenesis, are shown to be important for substrate accommodation/interaction. The position of the fibronectin type III domain excludes a direct participation of this domain in the recognition of small substrates, although it may be involved in the anchoring of the enzyme on large polymeric substrates and in thermostability.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 10

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy