SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Nordberg Per) ;hsvcat:4"

Sökning: WFRF:(Nordberg Per) > Lantbruksvetenskap

  • Resultat 1-10 av 20
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Kimming, Marie, et al. (författare)
  • Replacing fossil energy for organic milk production : potential biomass sources and greenhouse gas emission reductions
  • 2015
  • Ingår i: Journal of Cleaner Production. - : Elsevier BV. - 0959-6526 .- 1879-1786. ; 106, s. 400-407
  • Tidskriftsartikel (refereegranskat)abstract
    • There is a growing awareness of the climate impact of agricultural production, not least from cattle farms. Major sources of GHG emissions from milk production are enteric fermentation followed by fossil fuel use and manure/soil management systems. This study analyzes the potential to eliminate fossil fuel use from milk production farms in Sweden, by using residual farm resources of biomass to obtain self-sufficiency in fuel, heat and electricity. The change from a fossil-based energy system to a renewable system based on A) Biogas based on manure and straw and B) Biogas based on manure + RME were analyzed with consequential life cycle assessment (CLCA) methodology. Focus was energy use and GHG emissions and the functional unit was 1 kg of energy-corrected milk (ECM). The results show that organic milk producers can become self-sufficient in energy and reduce total GHG emissions from milk production by 46% in the Biogas system, or 32% in the Biogas + RME system compared to the Fossil system.
  •  
2.
  • Kimming, Marie, et al. (författare)
  • Biomass from agriculture in small-scale combined heat and power plants - A comparative life cycle assessment
  • 2011
  • Ingår i: Biomass and Bioenergy. - : Elsevier BV. - 0961-9534 .- 1873-2909. ; 35, s. 1572-1581
  • Tidskriftsartikel (refereegranskat)abstract
    • The results show that the biomass-based scenarios reduce greenhouse gas emissions considerably compared to the scenario based on fossil fuel, but have higher acidifying emissions. Scenario 1 has by far the best performance with respect to global warming potential and the advantage of utilizing a byproduct and thus not occupying extra land. Scenario 2 and 3 require less primary energy and less fossil energy input than 1, but set-aside land for willow production must be available. The low electric efficiency of scenario 3 makes it an unsuitable option. (C) 2011 Elsevier Ltd. All rights reserved.
  •  
3.
  • Kimming, Marie, et al. (författare)
  • Life cycle assessment of energy self-sufficiency systems based on agricultural residues for organic arable farms
  • 2011
  • Ingår i: Bioresource Technology. - : Elsevier BV. - 0960-8524 .- 1873-2976. ; 102, s. 1425-1432
  • Tidskriftsartikel (refereegranskat)abstract
    • The agricultural industry today consumes large amounts of fossil fuels. This study used consequential life cycle assessment (LCA) to analyse two potential energy self-sufficient systems for organic arable farms, based on agricultural residues. The analysis focused on energy balance, resource use and greenhouse gas (GHG) emissions. A scenario based on straw was found to require straw harvest from 25% of the farm area: 45% of the total energy produced from the straw was required for energy carrier production and GHG emissions were reduced by 9% compared with a fossil fuel-based reference scenario. In a scenario based on anaerobic digestion of ley, the corresponding figures were 13%, 24% and 35%. The final result was sensitive to assumptions regarding, e.g., soil carbon content and handling of by-products. (C) 2010 Elsevier Ltd. All rights reserved.
  •  
4.
  • Ahlgren, Serina, et al. (författare)
  • Det svenska jordbrukets framtida drivmedelsförsörjning
  • 2010
  • Rapport (övrigt vetenskapligt/konstnärligt)abstract
    • Syftet med detta arbete är att visa på möjligheter för det svenska jordbruket att bli försörjt med drivmedel även i en framtid, när oljan har blivit för dyr eller sällsynt för att kunna användas i tillräcklig omfattning. Detta projekt studerar möjligheterna att ersätta fossil diesel med första och andra generationens förnybara drivmedel, och omfattar drivmedel från råvaror med ursprung i både jord- och skogsbruk. De drivmedel som studeras är etanol, rapsmetylester (RME), biogas, Fischer-Tropsch diesel (FTD), dimetyleter (DME) och metanol. Arealbehov, energibalans och kostnader har beräknats. Studien visar att det finns tillräckligt med arealer i Sverige för att lantbruket ska kunna bli självförsörjande med drivmedel. För de drivmedel som baseras på grödor framförallt första generationens drivmedel) kommer dock mängden mat som är möjlig att producera att minska. Andra generationens drivmedel kan med fördel produceras från biprodukter som halm och matproduktionen behöver då inte minskas
  •  
5.
  •  
6.
  • Ahlgren, Serina, et al. (författare)
  • Nitrogen fertiliser production based on biogas - Energy input, environmental impact and land use
  • 2010
  • Ingår i: Bioresource Technology. - : Elsevier BV. - 0960-8524 .- 1873-2976. ; 101, s. 7181-7184
  • Tidskriftsartikel (refereegranskat)abstract
    • The aim of the present paper was to investigate the land use, environmental impact and fossil energy use when using biogas instead of natural gas in the production of nitrogen fertilisers The biogas was assumed to be produced from anaerobic digestion of ley grass and maize. The calculations showed that 1 ha of agricultural land in south-west Sweden can produce 1.7 metric ton of nitrogen in the form of ammonium nitrate per year from ley grass, or 3 6 ton from maize The impact on global warming, from cradle to gate, was calculated to be lower when producing nitrogen fertiliser from biomass compared with natural gas Eutrophication and acidification potential was higher in the biomass scenarios The greatest advantage of the biomass systems however lies in the potential to reduce agriculture's dependency on fossil fuels In the biomass scenarios, only 2-4 MJ of primary fossil energy was required, while 35 MJ/kg N was required when utilising natural gas (C) 2010 Elsevier Ltd All rights reserved
  •  
7.
  • Ahlgren, Serina, et al. (författare)
  • Tractive power in organic farming based on fuel cell technology : Energy balance and environmental load
  • 2009
  • Ingår i: Agricultural Systems. - : Elsevier BV. - 0308-521X .- 1873-2267. ; 102:1-3, s. 67-76
  • Tidskriftsartikel (refereegranskat)abstract
    • This study analysed a future hypothetical organic farm self-sufficient in renewable tractor fuel. Biomass from the farm was assumed to be transported to a central fuel production plant and the fuel returned to the farm, where it was utilised in fuel cell powered tractors. The land use, energy balance and environmental impact of five different scenarios were studied. In the first two scenarios, straw was used as raw material for production of hydrogen or methanol via thermochemical gasification. In the third and fourth scenarios, short rotation forest (Salix) was used as raw material for the same fuels. In the fifth scenario, ley was used as raw material for hydrogen fuel via biogas production. The straw scenarios had the lowest impact in all studied environmental impact categories since the Salix scenarios had higher soil emissions and the ley scenario had comparatively large emissions from the fuel production. The energy balance was also favourable for straw, 16.3 and 19.5 for hydrogen and methanol respectively, compared to Salix 14.2 and 15.6. For ley to hydrogen the energy balance was only 6.1 due to low efficiency in the fuel production. In the Salix scenarios, 1.6% and 2.0% of the land was set aside for raw material production in the hydrogen and methanol scenarios respectively. In the straw scenarios no land needed to be reserved, but straw was collected on 4.3% and 5.3% of the area for hydrogen and methanol respectively. To produce hydrogen from ley, 4% of the land was harvested. The study showed that the difference in environmental performance lay in choice of raw material rather than choice of fuel. Hydrogen is a gas with low volumetric energy density, which requires an adapted infrastructure and tractors equipped with gas tanks. This leads to the conclusion that methanol probably will be the preferred choice if a fuel cell powered farm would be put into practice in the future. © 2009 Elsevier Ltd. All rights reserved.
  •  
8.
  • Ahmadi Moghaddam, Elham, et al. (författare)
  • Exploring the potential for biomethane production by willow pyrolysis using life cycle assessment methodology
  • 2019
  • Ingår i: Energy, Sustainability and Society. - : Springer Science and Business Media LLC. - 2192-0567. ; 9
  • Tidskriftsartikel (refereegranskat)abstract
    • BackgroundBiomethane, as a potential substitute for natural gas, reduces the use of fossil-based sources, promoting bioenergy applications. Biomethane for energy use can be produced using a variety of biomass types and technologies. Biomethane from farmland crops is currently produced by anaerobic digestion (AD) of energy crops, which is a biological treatment of organic material resulting in biomethane and digestate. Recently, thermochemical conversion technologies of biomass to biomethane have gained attention. Pyrolysis is a thermochemical process whereby woody biomass is converted to fuel gas and biochar. This study assessed the land use efficiency of producing biomethane through a maize-based AD system compared with switching to a willow-based biomethane system using pyrolysis as an emerging technology. The energy performance and climate impact of the two pathways were assessed from a land use perspective, using life cycle assessment methodology. The entire technical system, from biomass production to delivery of biomethane as the end product, was included within the analysis. The study also investigated how the climate impact was affected when biochar was applied to soil to act as a soil amendment and carbon sequestration agent or when biochar was used as an energy source.ResultsPyrolysis of willow had a higher external energy ratio and climate mitigation effect than maize-based AD as a result of lower primary energy inputs and lower methane loss in the pyrolysis process and upgrading units. Furthermore, the biochar from willow pyrolysis, when used as a soil amendment or energy source, contributed significantly to the climate impact mitigation potential in both cases. Substituting fossil gas with biomethane gave a considerable reduction in climate impact in all scenarios, especially in the case of willow pyrolysis. The willow pyrolysis system acted as a carbon sink, resulting in a negative climate impact, counteracting global warming.ConclusionFrom a land use perspective, the transition from maize-based AD to a willow-based pyrolysis system for biomethane production could be beneficial regarding the energy performance and climate impact. Application of biochar to the soil in the willow scenario contributed significantly to counteracting emissions of greenhouse gases.
  •  
9.
  • Ericsson, Niclas, et al. (författare)
  • Climate impact and energy efficiency from electricity generation through anaerobic digestion or direct combustion of short rotation coppice willow
  • 2014
  • Ingår i: Applied Energy. - : Elsevier BV. - 0306-2619 .- 1872-9118. ; 132, s. 86-98
  • Tidskriftsartikel (refereegranskat)abstract
    • Short rotation coppice willow is an energy crop used in Sweden to produce electricity and heat in combined heat and power plants. Recent laboratory-scale experiments have shown that SRC willow can also be used for biogas production in anaerobic digestion processes.Here, life cycle assessment is used to compare the climate impact and energy efficiency of electricity and heat generated by these measures. All energy inputs and greenhouse gas emissions, including soil organic carbon fluxes were included in the life cycle assessment. The climate impact was determined using time-dependent life cycle assessment methodology.Both systems showed a positive net energy balance, but the direct combustion system delivered ninefold more energy than the biogas system. Both systems had a cooling effect on the global mean surface temperature change. The cooling impact per hectare from the biogas system was ninefold higher due to the carbon returned to soil with the digestate.Compensating the lower energy production of the biogas system with external energy sources had a large impact on the result, effectively determining whether the biogas scenario had a net warming or cooling contribution to the global mean temperature change per kWh of electricity. In all cases, the contribution to global warming was lowered by the inclusion of willow in the energy system. The use of time-dependent climate impact methodology shows that extended use of short rotation coppice willow can contribute to counteract global warming. (C) 2014 Elsevier Ltd. All rights reserved.
  •  
10.
  • Ericsson, Niclas, et al. (författare)
  • Time-dependent climate impact of a bioenergy system - methodology development and application to Swedish conditions
  • 2013
  • Ingår i: GCB Bioenergy. - : Wiley. - 1757-1693 .- 1757-1707. ; 5, s. 580-590
  • Tidskriftsartikel (refereegranskat)abstract
    • The area of dedicated energy crops is expected to increase in Sweden. This will result in direct land use changes, which may affect the carbon stocks in soil and biomass, as well as yield levels and the use of inputs. Carbon dioxide (CO2) fluxes of biomass are often not considered when calculating the climate impact in life cycle assessments (LCA) assuming that the CO2 released at combustion has recently been captured by the biomass in question. With the extended time lag between capture and release of CO2 inherent in many perennial bioenergy systems, the relation between carbon neutrality and climate neutrality may be questioned. In this paper, previously published methodologies and models are combined in a methodological framework that can assist LCA practitioners in interpreting the time-dependent climate impact of a bioenergy system. The treatment of carbon differs from conventional LCA practice in that no distinction is made between fossil and biogenic carbon. A time-dependent indicator is used to enable a representation of the climate impact that is not dependent on the choice of a specific characterization time horizon or time of evaluation and that does not use characterization factors, such as global warming potential and global temperature potential. The indicator used to aid in the interpretation phase of this paper is global mean surface temperature change (T-s(n)). A theoretical system producing willow for district heating was used to study land use change effects depending on previous land use and variations in the standing biomass carbon stocks. When replacing annual crops with willow this system presented a cooling contribution to T-s(n). However, the first years after establishing the willow plantation it presented a warming contribution to T-s(n). This behavior was due mainly to soil organic carbon (SOC) variation. A rapid initial increase in standing biomass counteracted the initial SOC loss.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 20

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy