SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Ntzani Evangelia) "

Sökning: WFRF:(Ntzani Evangelia)

  • Resultat 1-10 av 16
  • [1]2Nästa
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Markozannes, Georgios, et al. (författare)
  • An umbrella review of the literature on the effectiveness of psychological interventions for pain reduction.
  • 2017
  • Ingår i: BMC Psychology. - 2050-7283. ; 5:1
  • Tidskriftsartikel (refereegranskat)abstract
    • <p><strong>BACKGROUND:</strong> Psychological interventions are widely implemented for pain management and treatment, but their reported effectiveness shows considerable variation and there is elevated likelihood for bias.</p><p><strong>METHODS:</strong> We summarized the strength of evidence and extent of potential biases in the published literature of psychological interventions for pain treatment using a range of criteria, including the statistical significance of the random effects summary estimate and of the largest study of each meta-analysis, number of participants, 95% prediction intervals, between-study heterogeneity, small-study effects and excess significance bias.</p><p><strong>RESULTS:</strong> Thirty-eight publications were identified, investigating 150 associations between several psychological interventions and 29 different types of pain. Of the 141 associations based on only randomized controlled trials, none presented strong or highly suggestive evidence by satisfying all the aforementioned criteria. The effect of psychological interventions on reducing cancer pain severity, pain in patients with arthritis, osteoarthritis, rheumatoid arthritis, breast cancer, fibromyalgia, irritable bowel syndrome, self-reported needle-related pain in children/adolescents or with chronic musculoskeletal pain, chronic non-headache pain and chronic pain in general were supported by suggestive evidence.</p><p><strong>CONCLUSIONS:</strong> The present findings reveal the lack of strong supporting empirical evidence for the effectiveness of psychological treatments for pain management and highlight the need to further evaluate the established approach of psychological interventions to ameliorate pain.</p>
  •  
2.
  • Estrada, Karol, et al. (författare)
  • Genome-wide meta-analysis identifies 56 bone mineral density loci and reveals 14 loci associated with risk of fracture.
  • 2012
  • Ingår i: Nature genetics. - 1546-1718. ; 44:5, s. 491-501
  • Tidskriftsartikel (refereegranskat)abstract
    • Bone mineral density (BMD) is the most widely used predictor of fracture risk. We performed the largest meta-analysis to date on lumbar spine and femoral neck BMD, including 17 genome-wide association studies and 32,961 individuals of European and east Asian ancestry. We tested the top BMD-associated markers for replication in 50,933 independent subjects and for association with risk of low-trauma fracture in 31,016 individuals with a history of fracture (cases) and 102,444 controls. We identified 56 loci (32 new) associated with BMD at genome-wide significance (P < 5 x 10(-8)). Several of these factors cluster within the RANK-RANKL-OPG, mesenchymal stem cell differentiation, endochondral ossification and Wnt signaling pathways. However, we also discovered loci that were localized to genes not known to have a role in bone biology. Fourteen BMD-associated loci were also associated with fracture risk (P < 5 x 10(-4), Bonferroni corrected), of which six reached P < 5 x 10(-8), including at 18p11.21 (FAM210A), 7q21.3 (SLC25A13), 11q13.2 (LRP5), 4q22.1 (MEPE), 2p16.2 (SPTBN1) and 10q21.1 (DKK1). These findings shed light on the genetic architecture and pathophysiological mechanisms underlying BMD variation and fracture susceptibility.
  •  
3.
  • Estrada, Karol, et al. (författare)
  • Genome-wide meta-analysis identifies 56 bone mineral density loci and reveals 14 loci associated with risk of fracture
  • 2012
  • Ingår i: Nature Genetics. - 1061-4036 .- 1546-1718. ; 44:5, s. 491-501
  • Tidskriftsartikel (refereegranskat)abstract
    • <p>Bone mineral density (BMD) is the most widely used predictor of fracture risk. We performed the largest meta-analysis to date on lumbar spine and femoral neck BMD, including 17 genome-wide association studies and 32,961 individuals of European and east Asian ancestry. We tested the top BMD-associated markers for replication in 50,933 independent subjects and for association with risk of low-trauma fracture in 31,016 individuals with a history of fracture (cases) and 102,444 controls. We identified 56 loci (32 new) associated with BMD at genome-wide significance (P &lt; 5 x 10(-8)). Several of these factors cluster within the RANK-RANKL-OPG, mesenchymal stem cell differentiation, endochondral ossification and Wnt signaling pathways. However, we also discovered loci that were localized to genes not known to have a role in bone biology. Fourteen BMD-associated loci were also associated with fracture risk (P &lt; 5 x 10(-4), Bonferroni corrected), of which six reached P &lt; 5 x 10(-8), including at 18p11.21 (FAM210A), 7q21.3 (SLC25A13), 11q13.2 (LRP5), 4q22.1 (MEPE), 2p16.2 (SPTBN1) and 10q21.1 (DKK1). These findings shed light on the genetic architecture and pathophysiological mechanisms underlying BMD variation and fracture susceptibility.</p>
  •  
4.
  • Estrada, Karol, et al. (författare)
  • Genome-wide meta-analysis identifies 56 bone mineral density loci and reveals 14 loci associated with risk of fracture
  • 2012
  • Ingår i: Nature Genetics. - Nature Publishing Group. - 1061-4036 .- 1546-1718. ; 44, s. 491-501
  • Tidskriftsartikel (refereegranskat)abstract
    • <p>Bone mineral density (BMD) is the most widely used predictor of fracture risk. We performed the largest meta-analysis to date on lumbar spine and femoral neck BMD, including 17 genome-wide association studies and 32,961 individuals of European and east Asian ancestry. We tested the top BMD-associated markers for replication in 50,933 independent subjects and for association with risk of low-trauma fracture in 31,016 individuals with a history of fracture (cases) and 102,444 controls. We identified 56 loci (32 new) associated with BMD at genome-wide significance (P &lt; 5 × 10(-8)). Several of these factors cluster within the RANK-RANKL-OPG, mesenchymal stem cell differentiation, endochondral ossification and Wnt signaling pathways. However, we also discovered loci that were localized to genes not known to have a role in bone biology. Fourteen BMD-associated loci were also associated with fracture risk (P &lt; 5 × 10(-4), Bonferroni corrected), of which six reached P &lt; 5 × 10(-8), including at 18p11.21 (FAM210A), 7q21.3 (SLC25A13), 11q13.2 (LRP5), 4q22.1 (MEPE), 2p16.2 (SPTBN1) and 10q21.1 (DKK1). These findings shed light on the genetic architecture and pathophysiological mechanisms underlying BMD variation and fracture susceptibility.</p>
  •  
5.
  • Evangelou, Evangelos, et al. (författare)
  • A meta-analysis of genome-wide association studies identifies novel variants associated with osteoarthritis of the hip
  • 2014
  • Ingår i: Annals of the Rheumatic Diseases. - British Medical Association. - 1468-2060. ; 73:12, s. 2130-2136
  • Tidskriftsartikel (refereegranskat)abstract
    • Objectives Osteoarthritis (OA) is the most common form of arthritis with a clear genetic component. To identify novel loci associated with hip OA we performed a meta-analysis of genome-wide association studies (GWAS) on European subjects. Methods We performed a two-stage meta-analysis on more than 78 000 participants. In stage 1, we synthesised data from eight GWAS whereas data from 10 centres were used for 'in silico' or 'de novo' replication. Besides the main analysis, a stratified by sex analysis was performed to detect possible sex-specific signals. Meta-analysis was performed using inverse-variance fixed effects models. A random effects approach was also used. Results We accumulated 11 277 cases of radiographic and symptomatic hip OA. We prioritised eight single nucleotide polymorphism (SNPs) for follow-up in the discovery stage (4349 OA cases); five from the combined analysis, two male specific and one female specific. One locus, at 20q13, represented by rs6094710 (minor allele frequency (MAF) 4%) near the NCOA3 (nuclear receptor coactivator 3) gene, reached genome-wide significance level with p=7.9x10(-9) and OR=1.28 (95% CI 1.18 to 1.39) in the combined analysis of discovery (p= 5.6x10(-8)) and follow-up studies (p=7.3x10(-4)). We showed that this gene is expressed in articular cartilage and its expression was significantly reduced in OA-affected cartilage. Moreover, two loci remained suggestive associated; rs5009270 at 7q31 (MAF 30%, p=9.9x10(-7), OR=1.10) and rs3757837 at 7p13 (MAF 6%, p=2.2x10(-6), OR=1.27 in male specific analysis). Conclusions Novel genetic loci for hip OA were found in this meta-analysis of GWAS.
6.
  • Medina-Gomez, Carolina, et al. (författare)
  • Life-Course Genome-wide Association Study Meta-analysis of Total Body BMD and Assessment of Age-Specific Effects
  • 2018
  • Ingår i: American Journal of Human Genetics. - Cell Press. - 0002-9297. ; 102:1, s. 88-102
  • Tidskriftsartikel (refereegranskat)abstract
    • Bone mineral density (BMD) assessed by DXA is used to evaluate bone health. In children, total body (TB) measurements are commonly used; in older individuals, BMD at the lumbar spine (LS) and femoral neck (FN) is used to diagnose osteoporosis. To date, genetic variants in more than 60 loci have been identified as associated with BMD. To investigate the genetic determinants of TB-BMD variation along the life course and test for age-specific effects, we performed a meta-analysis of 30 genome-wide association studies (GWASs) of TB-BMD including 66,628 individuals overall and divided across five age strata, each spanning 15 years. We identified variants associated with TB-BMD at 80 loci, of which 36 have not been previously identified; overall, they explain approximately 10% of the TB-BMD variance when combining all age groups and influence the risk of fracture. Pathway and enrichment analysis of the association signals showed clustering within gene sets implicated in the regulation of cell growth and SMAD proteins, overexpressed in the musculoskeletal system, and enriched in enhancer and promoter regions. These findings reveal TB-BMD as a relevant trait for genetic studies of osteoporosis, enabling the identification of variants and pathways influencing different bone compartments. Only variants in ESR1 and close proximity to RANKL showed a clear effect dependency on age. This most likely indicates that the majority of genetic variants identified influence BMD early in life and that their effect can be captured throughout the life course.
  •  
7.
  • Morris, John A, et al. (författare)
  • An atlas of genetic influences on osteoporosis in humans and mice.
  • 2019
  • Ingår i: Nature genetics. - 1546-1718. ; 51, s. 258-266
  • Tidskriftsartikel (refereegranskat)abstract
    • Osteoporosis is a common aging-related disease diagnosed primarily using bone mineral density (BMD). We assessed genetic determinants of BMD as estimated by heel quantitative ultrasound in 426,824 individuals, identifying 518 genome-wide significant loci (301 novel), explaining 20% of its variance. We identified 13 bone fracture loci, all associated with estimated BMD (eBMD), in ~1.2 million individuals. We then identified target genes enriched for genes known to influence bone density and strength (maximum odds ratio (OR) = 58, P = 1 × 10-75) from cell-specific features, including chromatin conformation and accessible chromatin sites. We next performed rapid-throughput skeletal phenotyping of 126 knockout mice with disruptions in predicted target genes and found an increased abnormal skeletal phenotype frequency compared to 526 unselected lines (P < 0.0001). In-depth analysis of one gene, DAAM2, showed a disproportionate decrease in bone strength relative to mineralization. This genetic atlas provides evidence linking associated SNPs to causal genes, offers new insight into osteoporosis pathophysiology, and highlights opportunities for drug development.
  •  
8.
  • Oei, Ling, et al. (författare)
  • Genome-wide association study for radiographic vertebral fractures: A potential role for the 16q24 BMD locus
  • 2014
  • Ingår i: Bone. - 8756-3282. ; 59, s. 20-27
  • Tidskriftsartikel (refereegranskat)abstract
    • Vertebral fracture risk is a heritable complex trait. The aim of this study was to identify genetic susceptibility factors for osteoporotic vertebral fracture applying a genome-wide association study (GWAS) approach. The GWAS discovery was based on the Rotterdam Study, a population-based study of elderly Dutch individuals aged >55 years; and comprising 329 cases and 2666 controls with radiographic scoring (McCloskey-Kanis) and genetic data. Replication of one top-associated SNP was pursued by de-novo genotyping of 15 independent studies across Europe, the United States, and Australia and one Asian study. Radiographic vertebral fracture assessment was performed using McCloskey-Kanis or Genant semi-quantitative definitions. SNPs were analyzed in relation to vertebral fracture using logistic regression models corrected for age and sex. Fixed effects inverse variance and Han-Eskin alternative random effects meta-analyses were applied. Genome-wide significance was set at p<5 x 10(-8). In the discovery, a SNP (rs11645938) on chromosome 16q24 was associated with the risk for vertebral fractures at p = 4.6 x 10(-8). However, the association was not significant across 5720 cases and 21,791 controls from 14 studies. Fixed-effects meta-analysis summary estimate was 1.06 (95% Cl: 0.98-1.14; p = 0.17), displaying high degree of heterogeneity (I-2= 57%; Q(het)p = 0.0006). Under Han-Eskin alternative random effects model the summary effect was significant (p = 0.0005). The SNP maps to a region previously found associated with lumbar spine bone mineral density (LS-BMD) in two large meta-analyses from the GEFOS consortium. A false positive association in the GWAS discovery cannot be excluded, yet, the low-powered setting of the discovery and replication settings (appropriate to identify risk effect size >1.25) may still be consistent with an effect size <1.10, more of the type expected in complex traits. Larger effort in studies with standardized phenotype definitions is needed to confirm or reject the involvement of this locus on the risk for vertebral fractures. (C) 2013 Elsevier Inc. All rights reserved.
  •  
9.
  • Oei, Ling, et al. (författare)
  • Genome-wide association study for radiographic vertebral fractures : A potential role for the 16q24 BMD locus
  • 2014
  • Ingår i: Bone. - 8756-3282 .- 1873-2763. ; 59, s. 20-27
  • Tidskriftsartikel (refereegranskat)abstract
    • <p>Vertebral fracture risk is a heritable complex trait. The aim of this study was to identify genetic susceptibility factors for osteoporotic vertebral fracture applying a genome-wide association study (GWAS) approach. The GWAS discovery was based on the Rotterdam Study, a population-based study of elderly Dutch individuals aged &gt;55 years; and comprising 329 cases and 2666 controls with radiographic scoring (McCloskey-Kanis) and genetic data. Replication of one top-associated SNP was pursued by de-novo genotyping of 15 independent studies across Europe, the United States, and Australia and one Asian study. Radiographic vertebral fracture assessment was performed using McCloskey-Kanis or Genant semi-quantitative definitions. SNPs were analyzed in relation to vertebral fracture using logistic regression models corrected for age and sex. Fixed effects inverse variance and Han-Eskin alternative random effects meta-analyses were applied. Genome-wide significance was set at p&lt;5 x 10(-8). In the discovery, a SNP (rs11645938) on chromosome 16q24 was associated with the risk for vertebral fractures at p = 4.6 x 10(-8). However, the association was not significant across 5720 cases and 21,791 controls from 14 studies. Fixed-effects meta-analysis summary estimate was 1.06 (95% Cl: 0.98-1.14; p = 0.17), displaying high degree of heterogeneity (I-2= 57%; Q(het)p = 0.0006). Under Han-Eskin alternative random effects model the summary effect was significant (p = 0.0005). The SNP maps to a region previously found associated with lumbar spine bone mineral density (LS-BMD) in two large meta-analyses from the GEFOS consortium. A false positive association in the GWAS discovery cannot be excluded, yet, the low-powered setting of the discovery and replication settings (appropriate to identify risk effect size &gt;1.25) may still be consistent with an effect size &lt;1.10, more of the type expected in complex traits. Larger effort in studies with standardized phenotype definitions is needed to confirm or reject the involvement of this locus on the risk for vertebral fractures.</p>
  •  
10.
  • Panagopoulou, Paraskevi, et al. (författare)
  • Parental age and the risk of childhood acute myeloid leukemia : results from the Childhood Leukemia International Consortium
  • 2019
  • Ingår i: Cancer Epidemiology. - 1877-7821 .- 1877-783X. ; 59, s. 158-165
  • Tidskriftsartikel (refereegranskat)abstract
    • <p><strong>Background:</strong></p><p>Parental age has been associated with several childhood cancers, albeit the evidence is still inconsistent.</p><p><strong>Aim:</strong></p><p>To examine the associations of parental age at birth with acute myeloid leukemia (AML) among children aged 0-14 years using individual-level data from the Childhood Leukemia International Consortium (CLIC) and non-CLIC studies.</p><p><strong>Material/methods: </strong></p><p>We analyzed data of 3182 incident AML cases and 8377 controls from 17 studies [seven registry-based case-control (RCC) studies and ten questionnaire-based case-control (QCC) studies]. AML risk in association with parental age was calculated using multiple logistic regression, meta-analyses, and pooled-effect estimates. Models were stratified by age at diagnosis (infants &lt; 1 year-old vs. children 1-14 years-old) and by study design, using five-year parental age increments and controlling for sex, ethnicity, birthweight, prematurity, multiple gestation, birth order, maternal smoking and education, age at diagnosis (cases aged 1-14 years), and recruitment time period.</p><p><strong>Results:</strong></p><p>Adjusted odds ratios (ORs) and 95% confidence intervals (CIs) derived from RCC, but not from the QCC, studies showed a higher AML risk for infants of mothers &gt;= 40-year-old (OR = 6.87; 95% CI: 2.12-22.25). There were no associations observed between any other maternal or paternal age group and AML risk for children older than one year.</p><p><strong>Conclusions:</strong></p><p>An increased risk of infant AML with advanced maternal age was found using data from RCC, but not from QCC studies; no parental age-AML associations were observed for older children.</p>
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 16
  • [1]2Nästa
Åtkomst
fritt online (4)
Typ av publikation
tidskriftsartikel (15)
forskningsöversikt (1)
Typ av innehåll
refereegranskat (16)
Författare/redaktör
Rivadeneira, Fernand ... (11)
Uitterlinden, Andre ... (10)
Ralston, Stuart H (10)
Evans, David M (10)
Kiel, Douglas P (10)
Richards, J Brent (10)
visa fler...
Karasik, David (10)
Medina-Gomez, Caroli ... (10)
Hofman, Albert (9)
Ohlsson, Claes (9)
Hsu, Yi-Hsiang (9)
Reeve, Jonathan, (9)
Evangelou, Evangelos (9)
Liu, Ching-Ti (9)
Estrada, Karol (8)
Zillikens, M. Carola (8)
Vandenput, Liesbeth (8)
Stefansson, Kari (8)
van Meurs, Joyce B J (8)
Pettersson-Kymmer, U ... (8)
Brown, Matthew A., (8)
Duncan, Emma L., (8)
Kemp, John P. (8)
Amin, Najaf (7)
Van Duijn, Cornelia ... (7)
Thorleifsson, Gudmar (7)
Grundberg, Elin (7)
Cupples, L. Adrienne (7)
Harris, Tamara B. (7)
Thorsteinsdottir, Un ... (7)
Jackson, Rebecca D., (7)
Khaw, Kay-Tee (6)
Smith, Albert V. (6)
Kwan, Tony (6)
Pastinen, Tomi (6)
Center, Jacqueline R (6)
Eisman, John A (6)
Nguyen, Tuan V (6)
Ridker, Paul M., (6)
Chasman, Daniel I., (6)
Rose, Lynda M (6)
Zhu, Kun, (6)
Eriksson, Joel, (6)
Mellstrom, Dan (6)
Kooperberg, Charles (6)
LaCroix, Andrea Z. (6)
Svensson, Olle, (6)
Leo, Paul J., (6)
Li, Rui (6)
Moayyeri, Alireza (6)
visa färre...
Lärosäte
Göteborgs universitet (5)
Lunds universitet (5)
Uppsala universitet (5)
Umeå universitet (3)
Stockholms universitet (1)
Linköpings universitet (1)
Språk
Engelska (16)
Forskningsämne (UKÄ/SCB)
Medicin och hälsovetenskap (16)

År

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy