SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Nugent A.) ;pers:(Karamehmetoglu Emir)"

Sökning: WFRF:(Nugent A.) > Karamehmetoglu Emir

  • Resultat 1-8 av 8
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Fremling, Christoffer, et al. (författare)
  • Oxygen and helium in stripped-envelope supernovae
  • 2018
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 618
  • Tidskriftsartikel (refereegranskat)abstract
    • We present an analysis of 507 spectra of 173 stripped-envelope (SE) supernovae (SNe) discovered by the untargeted Palomar Transient Factory (PTF) and intermediate PTF (iPTF) surveys. Our sample contains 55 Type IIb SNe (SNe 45 Type Ib SNe (SNe IIb), 56 Type Ic SNe (SNe Ic), and 17 Type Ib/c SNe (SNe Ib/c). We have compared the SE SN subtypes via measurements of the pseudo-equivalent widths (pEWs) and velocities of the He I lambda lambda 5876, 7065 and O I lambda 7774 absorption lines. Consistent with previous work, we find that SNe Ic show higher pEWs and velocities in O I lambda 7774 compared to SNe IIb and Ib. The pEWs of the He I lambda lambda 5876, 7065 lines are similar in SNe Ib and IIb after maximum light. The He I lambda lambda 5876, 7065 velocities at maximum light are higher in SNe Ib compared to SNe IIb. We identify an anticorrelation between the He I lambda 7065 pEW and O I lambda 7774 velocity among SNe IIb and Ib. This can be interpreted as a continuum in the amount of He present at the time of explosion. It has been suggested that SNe Ib and Ic have similar amounts of He, and that lower mixing could be responsible for hiding He in SNe Ic. However, our data contradict this mixing hypothesis. The observed difference in the expansion rate of the ejecta around maximum light of SNe Ic (V-m root 2E(k)/M-ej approximate to 15 000 km s(-1)) and SNe Ib (V-m approximate to 9000 km s(-1)) would imply an average He mass difference of similar to 1.4 M-circle dot, if the other explosion parameters are assumed to be unchanged between the SE SN subtypes. We conclude that SNe Ic do not hide He but lose He due to envelope stripping.
  •  
2.
  • Fremling, Christoffer, et al. (författare)
  • PTF12os and iPTF13bvn. Two stripped-envelope supernovae from low-mass progenitors in NGC 5806
  • 2016
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 593
  • Tidskriftsartikel (refereegranskat)abstract
    • Context. We investigate two stripped-envelope supernovae (SNe) discovered in the nearby galaxy NGC 5806 by the (intermediate) Palomar Transient Factory [(i)PTF]. These SNe, designated PTF12os/SN 2012P and iPTF13bvn, exploded within ~520 days of one another at a similar distance from the host-galaxy center. We classify PTF12os as a Type IIb SN based on our spectral sequence; iPTF13bvn has previously been classified as Type Ib having a likely progenitor with zero age main sequence (ZAMS) mass below ~17 M⊙. Because of the shared and nearby host, we are presented with a unique opportunity to compare these two SNe.Aims. Our main objective is to constrain the explosion parameters of iPTF12os and iPTF13bvn, and to put constraints on the SN progenitors. We also aim to spatially map the metallicity in the host galaxy, and to investigate the presence of hydrogen in early-time spectra of both SNe.Methods. We present comprehensive datasets collected on PTF12os and iPTF13bvn, and introduce a new automatic reference-subtraction photometry pipeline (FPipe) currently in use by the iPTF. We perform a detailed study of the light curves (LCs) and spectral evolution of the SNe. The bolometric LCs are modeled using the hydrodynamical code hyde. We analyze early spectra of both SNe to investigate the presence of hydrogen; for iPTF13bvn we also investigate the regions of the Paschen lines in infrared spectra. We perform spectral line analysis of helium and iron lines to map the ejecta structure of both SNe. We use nebular models and late-time spectroscopy to constrain the ZAMS mass of the progenitors. We also perform image registration of ground-based images of PTF12os to archival HST images of NGC 5806 to identify a potential progenitor candidate.Results. We find that our nebular spectroscopy of iPTF13bvn remains consistent with a low-mass progenitor, likely having a ZAMS mass of ~12M⊙. Our late-time spectroscopy of PTF12os is consistent with a ZAMS mass of ~15M⊙. We successfully identify a source in pre-explosion HST images coincident with PTF12os. The colors and absolute magnitude of this object are consistent between pre-explosion and late-time HST images, implying it is a cluster of massive stars. Our hydrodynamical modeling suggests that the progenitor of PTF12os had a compact He core with a mass of 3.25+ 0.77-0.56M⊙ at the time of the explosion, which had a total kinetic energy of 0.54+ 0.41-0.25 × 1051 erg and synthesized 0.063+ 0.020-0.011M⊙ of strongly mixed  56Ni. Spectral comparisons to the Type IIb SN 2011dh indicate that the progenitor of PTF12os was surrounded by a thin hydrogen envelope with a mass lower than 0.02M⊙. We also find tentative evidence that the progenitor of iPTF13bvn could have been surrounded by a small amount of hydrogen prior to the explosion. This result is supported by possible weak signals of hydrogen in both optical and infrared spectra.
  •  
3.
  • Taddia, Francesco, et al. (författare)
  • Analysis of broad-lined Type Ic supernovae from the (intermediate) Palomar Transient Factory
  • 2019
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 621
  • Tidskriftsartikel (refereegranskat)abstract
    • We study 34 Type Ic supernovae that have broad spectral features (SNe Ic-BL). This is the only SN type found in association with long-duration gamma-ray bursts (GRBs). We obtained our photometric data with the Palomar Transient Factory (PTF) and its continuation, the intermediate PTF (iPTF). This is the first large, homogeneous sample of SNe Ic-BL from an untargeted survey. Furthermore, given the high observational cadence of iPTF, most of these SNe Ic-BL were discovered soon after explosion. We present K-corrected Bgriz light curves of these SNe, obtained through photometry on template-subtracted images. We analyzed the shape of the r-band light curves, finding a correlation between the decline parameter Delta m(15) and the rise parameter Delta m-(10 ). We studied the SN colors and, based on g - r, we estimated the host-galaxy extinction for each event. Peak r-band absolute magnitudes have an average of -18.6 +/- 0.5 mag. We fit each r-band light curve with that of SN 1998bw (scaled and stretched) to derive the explosion epochs. We computed the bolometric light curves using bolometric corrections, r-band data, and g - r colors. Expansion velocities from Fen were obtained by fitting spectral templates of SNe Ic. Bolometric light curves and velocities at peak were fitted using the semianalytic Arnett model to estimate ejecta mass M-ej , explosion energy E-K and Ni-56 mass M( Ni-56) for each SN. We find average values of M-ej = 4 +/- 3 M-circle dot, E-K = (7 +/- 6) x 10(51) erg, and M( Ni-56) = 0.31 +/- 0.16 M-circle dot . The parameter distributions were compared to those presented in the literature and are overall in agreement with them. We also estimated the degree of Ni-56 mixing using scaling relations derived from hydrodynamical models and we find that all the SNe are strongly mixed. The derived explosion parameters imply that at least 21% of the progenitors of SNe Ic-BL are compatible with massive (>28 M-circle dot), possibly single stars, whereas at least 64% might come from less massive stars in close binary systems.
  •  
4.
  • Whitesides, L., et al. (författare)
  • iPTF 16asu : A Luminous, Rapidly Evolving, and High-velocity Supernova
  • 2017
  • Ingår i: Astrophysical Journal. - : American Astronomical Society. - 0004-637X .- 1538-4357. ; 851:2
  • Tidskriftsartikel (refereegranskat)abstract
    • Wide-field surveys are discovering a growing number of rare transients whose physical origin is not yet well understood. Here we present optical and UV data and analysis of intermediate Palomar Transient Factory (iPTF) 16asu, a luminous, rapidly evolving, high-velocity, stripped-envelope supernova ( SN). With a rest-frame rise time of just four. days and a peak absolute magnitude of M-g = -20.4 mag, the light curve of iPTF 16asu is faster and more luminous than that of previous rapid transients. The spectra of iPTF 16asu show a featureless blue continuum near peak that develops into an SN Ic-BL spectrum on the decline. We show that while the late-time light curve could plausibly be powered by Ni-56 decay, the early emission requires a different energy source. Nondetections in the X-ray and radio strongly constrain the energy coupled to relativistic ejecta to be at most comparable to the class of low-luminosity gamma-ray bursts (GRBs). We suggest that the early emission may have been powered by either a rapidly spinning-down magnetar or by shock breakout in an extended envelope of a very energetic explosion. In either scenario a central engine is required, making iPTF 16asu an intriguing transition object between superluminous SNe, SNe Ic-BL, and low-luminosity GRBs.
  •  
5.
  • Adams, S. M., et al. (författare)
  • iPTF Survey for Cool Transients
  • 2018
  • Ingår i: Publications of the Astronomical Society of the Pacific. - : IOP Publishing. - 0004-6280 .- 1538-3873. ; 130:985
  • Tidskriftsartikel (refereegranskat)abstract
    • We performed a wide-area (2000 deg2) g and I band experiment as part of a two month extension to the Intermediate Palomar Transient Factory. We discovered 36 extragalactic transients including iPTF17lf, a highly reddened local SN Ia, iPTF17bkj, a new member of the rare class of transitional Ibn/IIn supernovae, and iPTF17be, a candidate luminous blue variable outburst. We do not detect any luminous red novae and place an upper limit on their rate. We show that adding a slow-cadence I band component to upcoming surveys such as the Zwicky Transient Facility will improve the photometric selection of cool and dusty transients.
  •  
6.
  • Blagorodnova, N., et al. (författare)
  • The Broad Absorption Line Tidal Disruption Event iPTF15af : Optical and Ultraviolet Evolution
  • 2019
  • Ingår i: Astrophysical Journal. - : American Astronomical Society. - 0004-637X .- 1538-4357. ; 873:1
  • Tidskriftsartikel (refereegranskat)abstract
    • We present multiwavelength observations of the tidal disruption event (TDE) iPTF15af, discovered by the intermediate Palomar Transient Factory survey at redshift z = 0.07897. The optical and ultraviolet (UV) light curves of the transient show a slow decay over 5 months, in agreement with previous optically discovered TDEs. It also has a comparable blackbody peak luminosity of L-peak approximate to 1.5 x 10(44) erg s(-1). The inferred temperature from the optical and UV data shows a value of (3-5) x 10(4) K. The transient is not detected in X-rays up to L-X < 3 x 10(42) erg s(-1) within the first 5 months after discovery. The optical spectra exhibit two distinct broad emission lines in the He II region, and at later times also H alpha emission. Additionally, emission from [N III] and [O III] is detected, likely produced by the Bowen fluorescence effect. UV spectra reveal broad emission and absorption lines associated with high-ionization states of N V, C IV, Si IV, and possibly P V. These features, analogous to those of broad absorption line quasars (BAL QSOs), require an absorber with column densities N-H > 10(23) cm(-2). This optically thick gas would also explain the nondetection in soft X-rays. The profile of the absorption lines with the highest column density material at the largest velocity is opposite that of BAL QSOs. We suggest that radiation pressure generated by the TDE flare at early times could have provided the initial acceleration mechanism for this gas. Spectral UV line monitoring of future TDEs could test this proposal.
  •  
7.
  • Soumagnac, Maayane T., et al. (författare)
  • SN 2018fif : The Explosion of a Large Red Supergiant Discovered in Its Infancy by the Zwicky Transient Facility
  • 2020
  • Ingår i: Astrophysical Journal. - : American Astronomical Society. - 0004-637X .- 1538-4357. ; 902:1
  • Tidskriftsartikel (refereegranskat)abstract
    • High-cadence transient surveys are able to capture supernovae closer to their first light than ever before. Applying analytical models to such early emission, we can constrain the progenitor stars' properties. In this paper, we present observations of SN 2018fif (ZTF 18abokyfk). The supernova was discovered close to first light and monitored by the Zwicky Transient Facility (ZTF) and the Neil Gehrels Swift Observatory. Early spectroscopic observations suggest that the progenitor of SN 2018fif was surrounded by relatively small amounts of circumstellar material compared to all previous cases. This particularity, coupled with the high-cadence multiple-band coverage, makes it a good candidate to investigate using shock-cooling models. We employ the SOPRANOS code, an implementation of the model by Sapir & Waxman and its extension to early times by Morag et al. Compared with previous implementations, SOPRANOS has the advantage of including a careful account of the limited temporal validity domain of the shock-cooling model as well as allowing usage of the entirety of the early UV data. We find that the progenitor of SN 2018fif was a large red supergiant with a radius of R = 744.0(-128.0)(+183.0) R-circle dot and an ejected mass of M-ej = 9.3(-5.8)(+0.4) M-circle dot. Our model also gives information on the explosion epoch, the progenitor's inner structure, the shock velocity, and the extinction. The distribution of radii is double-peaked, with smaller radii corresponding to lower values of the extinction, earlier recombination times, and a better match to the early UV data. If these correlations persist in future objects, denser spectroscopic monitoring constraining the time of recombination, as well as accurate UV observations (e.g., with ULTRASAT), will help break the extinction/radius degeneracy and independently determine both.
  •  
8.
  • Taddia, Francesco, et al. (författare)
  • PTF11mnb : First analog of supernova 2005bf Long-rising, double-peaked supernova Ic from a massive progenitor
  • 2018
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 609
  • Tidskriftsartikel (refereegranskat)abstract
    • Aims. We study PTF11mnb, a He-poor supernova (SN) whose light curves resemble those of SN 2005bf, a peculiar double-peaked stripped-envelope (SE) SN, until the declining phase after the main peak. We investigate the mechanism powering its light curve and the nature of its progenitor star. Methods. Optical photometry and spectroscopy of PTF11mnb are presented. We compared light curves, colors and spectral properties to those of SN 2005bf and normal SE SNe. We built a bolometric light curve and modeled this light curve with the SuperNova Explosion Code (SNEC) hydrodynamical code explosion of a MESA progenitor star and semi-analytic models. Results. The light curve of PTF11mnb turns out to be similar to that of SN 2005bf until similar to 50 d when the main (secondary) peaks occur at -18.5 mag. The early peak occurs at similar to 20 d and is about 1.0 mag fainter. After the main peak, the decline rate of PTF11mnb is remarkably slower than what was observed in SN 2005bf, and it traces well the Co-56 decay rate. The spectra of PTF11mnb reveal a SN Ic and have no traces of He unlike in the case of SN Ib 2005bf, although they have velocities comparable to those of SN 2005bf. The whole evolution of the bolometric light curve is well reproduced by the explosion of a massive (M-ej = 7.8 M-circle dot), He-poor star characterized by a double-peaked Ni-56 distribution, a total Ni-56 mass of 0.59 M-circle dot, and an explosion energy of 2.2 x 10(51) erg. Alternatively, a normal SN Ib/c explosion (M(Ni-56) = 0.11 M-circle dot, E-K = 0.2 x 10(51) erg, M-ej = 1 M-circle dot) can power the first peak while a magnetar, with a magnetic field characterized by B = 5.0 x 10(14) G, and a rotation period of P = 18.1 ms, provides energy for the main peak. The early g-band light curve can be fit with a shock-breakout cooling tail or an extended envelope model from which a radius of at least 30 R-circle dot is obtained. Conclusions. We presented a scenario where PTF11mnb was the explosion of a massive, He-poor star, characterized by a double-peaked Ni-56 distribution. In this case, the ejecta mass and the absence of He imply a large ZAMS mass (similar to 85 M-circle dot) for the progenitor, which most likely was a Wolf-Rayet star, surrounded by an extended envelope formed either by a pre-SN eruption or due to a binary configuration. Alternatively, PTF11mnb could be powered by a SE SN with a less massive progenitor during the first peak and by a magnetar afterward.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-8 av 8

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy