SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Nylin Sören) srt2:(2020);mspu:(article)"

Sökning: WFRF:(Nylin Sören) > (2020) > Tidskriftsartikel

  • Resultat 1-3 av 3
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Braga, Mariana P., et al. (författare)
  • Bayesian Inference of Ancestral Host-Parasite Interactions under a Phylogenetic Model of Host Repertoire Evolution
  • 2020
  • Ingår i: Systematic Biology. - : Oxford University Press (OUP). - 1063-5157 .- 1076-836X. ; 69:6, s. 1149-1162
  • Tidskriftsartikel (refereegranskat)abstract
    • Intimate ecological interactions, such as those between parasites and their hosts, may persist over long time spans, coupling the evolutionary histories of the lineages involved. Most methods that reconstruct the coevolutionary history of such interactions make the simplifying assumption that parasites have a single host. Many methods also focus on congruence between host and parasite phylogenies, using cospeciation as the null model. However, there is an increasing body of evidence suggesting that the host ranges of parasites are more complex: that host ranges often include more than one host and evolve via gains and losses of hosts rather than through cospeciation alone. Here, we develop a Bayesian approach for inferring coevolutionary history based on a model accommodating these complexities. Specifically, a parasite is assumed to have a host repertoire, which includes both potential hosts and one or more actual hosts. Over time, potential hosts can be added or lost, and potential hosts can develop into actual hosts or vice versa. Thus, host colonization is modeled as a two-step process that may potentially be influenced by host relatedness. We first explore the statistical behavior of our model by simulating evolution of host-parasite interactions under a range of parameter values. We then use our approach, implemented in the program RevBayes, to infer the coevolutionary history between 34 Nymphalini butterfly species and 25 angiosperm families. Our analysis suggests that host relatedness among angiosperm families influences how easily Nymphalini lineages gain new hosts.
  •  
2.
  • Eriksson, Maertha, et al. (författare)
  • Structural plasticity of olfactory neuropils in relation to insect diapause
  • 2020
  • Ingår i: Ecology and Evolution. - : Wiley. - 2045-7758. ; 10:24, s. 14423-14434
  • Tidskriftsartikel (refereegranskat)abstract
    • Many insects that live in temperate zones spend the cold season in a state of dormancy, referred to as diapause. As the insect must rely on resources that were gathered before entering diapause, keeping a low metabolic rate is of utmost importance. Organs that are metabolically expensive to maintain, such as the brain, can therefore become a liability to survival if they are too large. Insects that go through diapause as adults generally do so before entering the season of reproduction. This order of events introduces a conflict between maintaining low metabolism during dormancy and emerging afterward with highly developed sensory systems that improve fitness during the mating season. We investigated the timing of when investments into the olfactory system are made by measuring the volumes of primary and secondary olfactory neuropils in the brain as they fluctuate in size throughout the extended diapause life-period of adult Polygonia c-album butterflies. Relative volumes of both olfactory neuropils increase significantly during early adult development, indicating the importance of olfaction to this species, but still remain considerably smaller than those of nondiapausing conspecifics. However, despite butterflies being kept under the same conditions as before the dormancy, their olfactory neuropil volumes decreased significantly during the postdormancy period. The opposing directions of change in relative neuropil volumes before and after diapause dormancy indicate that the investment strategies governing structural plasticity during the two life stages could be functionally distinct. As butterflies were kept in stimulus-poor conditions, we find it likely that investments into these brain regions rely on experience-expectant processes before diapause and experience-dependent processes after diapause conditions are broken. As the shift in investment strategies coincides with a hard shift from premating season to mating season, we argue that these developmental characteristics could be adaptations that mitigate the trade-off between dormancy survival and reproductive fitness.
  •  
3.
  • Ma, Lijun, et al. (författare)
  • A phylogenomic tree inferred with an inexpensive PCR-generated probe kit resolves higher-level relationships among Neptis butterflies (Nymphalidae: Limenitidinae)
  • 2020
  • Ingår i: Systematic Entomology. - : Wiley. - 0307-6970 .- 1365-3113. ; 45:4, s. 924-934
  • Tidskriftsartikel (refereegranskat)abstract
    • Recent advances in obtaining reduced representation libraries for next-generation sequencing permit phylogenomic analysis of species-rich, recently diverged taxa. In this study, we performed sequence capture with homemade PCR-generated probes to study diversification among closely related species in a large insect genus to examine the utility of this method. We reconstructed the phylogeny of Neptis Fabricius, a large and poorly studied nymphalid butterfly genus distributed throughout the Old World. We inferred relationships among 108 Neptis samples using 89 loci totaling up to 84 519 bp per specimen. Our taxon sample focused on Palearctic, Oriental and Australasian species, but included 8 African species and outgroups from 5 related genera. Maximum likelihood and Bayesian analyses yielded identical trees with full support for almost all nodes. We confirmed that Neptis is not monophyletic because Lasippa heliodore (Fabricius) and Phaedyma amphion (Linnaeus) are nested within the genus, and we redefine species groups for Neptis found outside of Africa. The statistical support of our results demonstrates that the probe set we employed is useful for inferring phylogenetic relationships among Neptis species and likely has great value for intrageneric phylogenetic reconstruction of Lepidoptera. Based on our results, we revise the following two taxa: Neptis heliodore comb. rev. and Neptis amphion comb. rev.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-3 av 3

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy