SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(O'Brien P.) ;mspu:(conferencepaper)"

Sökning: WFRF:(O'Brien P.) > Konferensbidrag

  • Resultat 1-10 av 22
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Feroci, M., et al. (författare)
  • The large observatory for x-ray timing
  • 2014
  • Ingår i: Proceedings of SPIE - The International Society for Optical Engineering. - : SPIE. - 9780819496126
  • Konferensbidrag (refereegranskat)abstract
    • The Large Observatory For x-ray Timing (LOFT) was studied within ESA M3 Cosmic Vision framework and participated in the final downselection for a launch slot in 2022-2024. Thanks to the unprecedented combination of effective area and spectral resolution of its main instrument, LOFT will study the behaviour of matter under extreme conditions, such as the strong gravitational field in the innermost regions of accretion flows close to black holes and neutron stars, and the supranuclear densities in the interior of neutron stars. The science payload is based on a Large Area Detector (LAD, 10 m2 effective area, 2-30 keV, 240 eV spectral resolution, 1° collimated field of view) and a Wide Field Monitor (WFM, 2-50 keV, 4 steradian field of view, 1 arcmin source location accuracy, 300 eV spectral resolution). The WFM is equipped with an on-board system for bright events (e.g. GRB) localization. The trigger time and position of these events are broadcast to the ground within 30 s from discovery. In this paper we present the status of the mission at the end of its Phase A study.
  •  
2.
  • Feroci, M., et al. (författare)
  • LOFT - The large observatory for x-ray timing
  • 2012
  • Ingår i: Proceedings of SPIE - The International Society for Optical Engineering. - : SPIE - International Society for Optical Engineering. - 9780819491442 ; , s. 84432D-
  • Konferensbidrag (refereegranskat)abstract
    • The LOFT mission concept is one of four candidates selected by ESA for the M3 launch opportunity as Medium Size missions of the Cosmic Vision programme. The launch window is currently planned for between 2022 and 2024. LOFT is designed to exploit the diagnostics of rapid X-ray flux and spectral variability that directly probe the motion of matter down to distances very close to black holes and neutron stars, as well as the physical state of ultradense matter. These primary science goals will be addressed by a payload composed of a Large Area Detector (LAD) and a Wide Field Monitor (WFM). The LAD is a collimated (<1 degree field of view) experiment operating in the energy range 2-50 keV, with a 10 m2 peak effective area and an energy resolution of 260 eV at 6 keV. The WFM will operate in the same energy range as the LAD, enabling simultaneous monitoring of a few-steradian wide field of view, with an angular resolution of <5 arcmin. The LAD and WFM experiments will allow us to investigate variability from submillisecond QPO's to yearlong transient outbursts. In this paper we report the current status of the project.
  •  
3.
  •  
4.
  • Giroletti, M., et al. (författare)
  • Filming the evolution of symbiotic novae with VLBI: The 2021 explosion of RS Oph
  • 2023
  • Ingår i: Proceedings of Science. - 1824-8039. ; 428
  • Konferensbidrag (refereegranskat)abstract
    • Fifteen years after its previous outburst, the symbiotic recurrent nova RS Oph exploded again on 2021 Aug 8th, its first outburst during the Fermi era. In symbiotic novae, the material ejected from the surface of the white dwarf (WD) after the thermonuclear runaway drives a strong shock through the dense circumstellar gas produced by the red giant (RG) wind. This nova is a perfect real-Time laboratory for studying physical processes as diverse as accretion, thermonuclear explosions, shock dynamics and particle acceleration; in many ways it is like a supernova remnant on fast forward. The experience of its previous outburst and that of 2010 for V407 (the symbiotic nova that has been extensively observed during the Fermi era), indicates that a large sensitivity and a broad range of baseline lengths are necessary to follow its evolution over a period of several weeks. This would provide unique constraints on major outstanding problems, including the emission mechanisms, the physical processes at work, the presence and location of shock acceleration, the geometry of the system, and the density of the RG wind. We present preliminary results from the EVN+e-MERLIN observations carried out on weeks/months time scales after the August explosion.
  •  
5.
  •  
6.
  •  
7.
  • Khan, U., et al. (författare)
  • The MORPHIC Project: Enabling large scale programmable photonic circuits using MEMS
  • 2018
  • Konferensbidrag (övrigt vetenskapligt/konstnärligt)abstract
    • In MORPHIC, we are enhancing the capabilities of already established silicon photonics platform with low-power and non-volatile MEMS actuators to achieve programmability and re-configurability of the photonic circuits. The combining of high speed silicon photonics, non-volatile MEMS actuation, electronics controlled reconfigurable connectivity and high level design methodologies and programming interface in a package will lead to a complete Field-Programmable Photonic Integrated Circuits (FP-PIC) platform. Ultimately, technology platforms for both generic FP-PIC and Application-Specific Photonic Integrated Circuits (AS-PIC) with possibility of volume manufacturing will be demonstrated.
  •  
8.
  •  
9.
  • Quack, N., et al. (författare)
  • Silicon photonic MEMS : Exploiting mechanics at the nanoscale to enhance photonic integrated circuits
  • 2019
  • Ingår i: Optics InfoBase Conference Papers. - Washington, D.C. : OSA - The Optical Society.
  • Konferensbidrag (refereegranskat)abstract
    • With the maturing and the increasing complexity of Silicon Photonics technology, novel avenues are pursued to reduce power consumption and to provide enhanced functionality: exploiting mechanical movement in advanced Silicon Photonic Integrated Circuits provides a promising path to access a strong modulation of the effective index and to low power consumption by employing mechanically stable and thus non-volatile states. In this paper, we will discuss recent achievements in the development of MEMS enabled systems in Silicon Photonics and outline the roadmap towards reconfigurable general Photonic Integrated Circuits. 
  •  
10.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 22

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy