SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Oden A) ;pers:(Odén Magnus)"

Sökning: WFRF:(Oden A) > Odén Magnus

  • Resultat 1-10 av 20
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Björk, Emma, et al. (författare)
  • Mesoporous silica and carbon based catalysts for esterification and biodiesel fabrication-The effect of matrix surface composition and porosity
  • 2017
  • Ingår i: Applied Catalysis A. - : ELSEVIER SCIENCE BV. - 0926-860X .- 1873-3875. ; 533, s. 49-58
  • Tidskriftsartikel (refereegranskat)abstract
    • The effects of catalyst matrix porosity composition on the catalytic performance have been studied using sulfonated mesoporous SBA-15 silica. The matrix was sulfonated with three different methods grafting, in situ oxidation, and carbon infiltration. Additionally, unordered sulfonated mesoporous carbon, and the commercial catalysts Amberlite IR-120 and Nafion 117 were tested. The catalytic performance was evaluated in a Fischer esterification using acetic acid and ethanol, as well as in a transesterification of triglycerides (sunflower oil) and ethanol to produce biodiesel. The study shows that for long carbon chains, the effective wetting of the porous catalyst matrix by the reactants is most important for the catalytic efficiency, while for shorter carbon chain, the mass transport of the reagents trough the porous structure is more important. The catalysts were analysed using electron microscopy and physisorption. The study shows that the reactions are faster with carbon infiltrated materials than the silica materials due to a higher concentration of sulfonic groups linked to the carbon. The in situ functionalized SBA-15 is a more efficient catalyst compared to the post grafted one. All the synthesized catalysts outperform the commercial ones in both reactions in terms of conversion. (C) 2017 Elsevier B.V. All rights reserved.
  •  
2.
  • Jensen, J.A.D., et al. (författare)
  • Electrochemically deposited nickel membranes, process-microstructure-property relationships
  • 2003
  • Ingår i: Surface & Coatings Technology. - 0257-8972 .- 1879-3347. ; 172:1, s. 79-89
  • Tidskriftsartikel (refereegranskat)abstract
    • This paper reports on the manufacturing, surface morphology, internal structure and mechanical properties of Ni-foils used as membranes in reference-microphones. Two types of foils, referred to as S-type and 0-type foils, were electrochemically deposited from a Watts-type electrolyte, with (S-type) or without (0-type) the use of the sulfur-containing additive sodium saccharin. Both types of Ni-foils appeared perfectly smooth when investigated with scanning electron microscopy (SEM), while atomic force microscopy (AFM) and transmission electron microscopy (TEM) revealed differences in the surface morphologies and a smaller grain-size in the S-type foils. X-Ray diffraction showed a <311> texture component in both types of Ni-foils, most pronounced for 0-type foils. A minor <111> texture component observed in both foil types was strongest in the S-type foils. Mechanically 0-type foils proved more ductile than S-type foils during thin film tensile testing, due to microstructural defects caused by sodium saccharin during deposition. Tensile strengths in the order of 700-1000 MPa were observed - highest for the more ductile 0-type foils. A hardness in the order of 6 GPa (590 HV) was found by nanoindentation. © 2003 Elsevier Science B.V. All rights reserved.
  •  
3.
  • Lauridsen, Jonas, et al. (författare)
  • Microstructural and Chemical Analysis of AgI Coatings Used as a Solid Lubricant in Electrical Sliding Contacts
  • 2012
  • Ingår i: Tribology letters. - : Springer Verlag (Germany). - 1023-8883 .- 1573-2711. ; 46:2, s. 187-193
  • Tidskriftsartikel (refereegranskat)abstract
    • AgI coatings have been deposited by electroplating on Ag-plated Cu coupons. Electron microscopy shows that the coatings consist of weakly agglomerated AgI grains. X-ray diffraction, differential scanning calorimetry, thermogravimetry, and mass spectrometry show that the AgI exhibits a reversible transformation from hexagonal to cubic phase at 150 A degrees C. AgI starts to decompose at 150 A degrees C with an accelerating rate up to the AgI melting temperature (555 A degrees C), where a complex-bonded hydroxide evaporates. Ag pin-on-disk testing shows that the iodine addition to Ag decreases the friction coefficient from 1.2 to similar to 0.4. The contact resistance between AgI and Ag becomes less than 100 mu I (c) after similar to 500 operations as the AgI deagglomerates, and Ag is exposed on the surface and remains low during at least 10,000 reciprocating operations. This makes AgI suitable as a solid lubricant in electrical contacts.
  •  
4.
  • Salamania, Janella, 1992-, et al. (författare)
  • Elucidating dislocation core structures in titanium nitride through high-resolution imaging and atomistic simulations
  • 2022
  • Ingår i: Materials & design. - : Elsevier. - 0264-1275 .- 1873-4197. ; 224
  • Tidskriftsartikel (refereegranskat)abstract
    • Although titanium nitride (TiN) is among the most extensively studied and thoroughly characterizedthin-film ceramic materials, detailed knowledge of relevant dislocation core structures is lacking. Byhigh-resolution scanning transmission electron microscopy (STEM) of epitaxial single crystal (001)-oriented TiN films, we identify different dislocation types and their core structures. These include, besidesthe expected primary a/2{110}h110i dislocation, Shockley partial dislocations a/6{111}h112i and sessileLomer edge dislocations a/2{100}h011i. Density-functional theory and classical interatomic potentialsimulations complement STEM observations by recovering the atomic structure of the different disloca-tion types, estimating Peierls stresses, and providing insights on the chemical bonding nature at the core.The generated models of the dislocation cores suggest locally enhanced metal–metal bonding, weakenedTi-N bonds, and N vacancy-pinning that effectively reduces the mobilities of {110}h110i and {111}h112idislocations. Our findings underscore that the presence of different dislocation types and their effects onchemical bonding should be considered in the design and interpretations of nanoscale and macroscopicproperties of TiN.
  •  
5.
  • Ballem, Mohamed A., et al. (författare)
  • Influence of synthesis temperature on morphology of SBA-16 mesoporous materials with a three-dimensional pore system
  • 2010
  • Ingår i: Microporous and Mesoporous Materials. - : Elsevier BV. - 1387-1811 .- 1873-3093. ; 129, s. 106-111
  • Tidskriftsartikel (refereegranskat)abstract
    • Spherical particles of mesoporous silica SBA-16 with cubic Im3m structure were synthesized at low pH using Pluronic F127 as template and TEOS as silica source. The diameter of the spherical particles can be controlled in the range of 0.5–8 μm by varying synthesis temperature from 1 °C up to 40 °C. A sharp transition from large particle sizes at approximately 20 °C to smaller ones is observed when the temperature is increased. It is suggested that this morphology transition is due to a change in hydrolysis and condensation rate of the silica source and as a result the assembly of F127 micelles will differ. The SBA-16 samples were characterized using powder X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and nitrogen adsorption techniques.
  •  
6.
  • Ballem, Mohamed A., et al. (författare)
  • Low Temperature Nanocasting of Ultrafine Hematite Nanoparticles using Mesoporous Silica Molds
  • 2012
  • Ingår i: Powder Technology. - : Elsevier. - 0032-5910 .- 1873-328X. ; 217, s. 269-273
  • Tidskriftsartikel (refereegranskat)abstract
    • Iron oxide (α-Fe2O3) nanoparticles with very small size, high crystallinity, and narrow size distribution were synthesized by infiltration of Fe(NO3)3.9H2O as an oxide precursor into mesoporous silica (SBA-15 and SBA-16) molds using a wetimpregnation technique. High resolution transmission electron microscopy shows that during the hydrothermal treatment of the precursor at 140 °C for 2 days, stable α-Fe2O3 nanoparticles inside the silica pores are formed. Subsequent leaching out of the silica template by NaOH resulted in well dispersed nanoparticles with an average diameter of ~ 4 nm.
  •  
7.
  • Ballem, Mohamed A., et al. (författare)
  • Mesoporous silica templated zirconia nanoparticles
  • 2011
  • Ingår i: Journal of nanoparticle research. - : SpringerLink. - 1388-0764 .- 1572-896X. ; 13:7, s. 2743-2748
  • Tidskriftsartikel (refereegranskat)abstract
    • Nanoparticles of zirconium oxide (ZrO2)were synthesized by infiltration of a zirconia precursor(ZrOCl28H2O) into a SBA-15 mesoporous silicamold using a wet-impregnation technique. X-raydiffractometry and high-resolution transmission electronmicroscopy show formation of stable ZrO2nanoparticles inside the silica pores after a thermaltreatment at 550 C. Subsequent leaching out of thesilica template by NaOH resulted in well-dispersedZrO2 nanoparticles with an average diameter of*4 nm. The formed single crystal nanoparticles arefaceted with 110 surfaces termination suggesting it tobe the preferred growth orientation. A growth modelof these nanoparticles is also suggested.
  •  
8.
  • Ballem, Mohamed A. (författare)
  • Synthesis of Mesoporous Silica and their Use as Templates for Metal and Metal Oxide Nanoparticles
  • 2011
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • This thesis covers the synthesis and characterization of two types of mesoporous silica, SBA-15 silica with two-dimensional hexagonal arrangement, and SBA-16 silica with three-dimensional cubic arrangement. The obtained mesoporous materials were then used as hard templates for synthesizing of different types of nanostructures. In the first part, the effects of some synthesis parameters on the morphology and texture properties of the mesoporous silica have been studied. By varying the synthesis temperature solid spheres of SBA-16 with different sizes were synthesized and by additions of heptane as a swelling agent, SBA-16 in a hollow-sphere morphology with a large pore size was obtained. In the case of SBA-15, dispersed rods were synthesized in the presence of heptane and NH4F in a low-temperature synthesis. The length of the rods was varied by changing the concentration of HCl, and the pore size was tuned by changing the hydrothermal treatment time and temperature. Furthermore, the reaction time was decreased with a well-retained pore size and morphology. This work has resulted in SBA-15 rods with large pore sizes for this morphology. In the second part, SBA-15 and SBA-16 silica were used to synthesize different nanostructured materials such as metal and metal oxide nanoparticles. In fact, most of the work in this part is focused on the use of mesoporous silica as hard templates for synthesis of different types of nanoparticles. The synthesis of these nanoparticles was carried out by infiltration of a suitable precursor in the pores of the silica template. The mesoporous frameworks act as molds controlling the size and the final shape of the formed nanostructures. Subsequent dissolution of the silica templates by NaOH resulted in e.g., monodispersed zirconia, hematite, and cobalt nanoparticles with narrow size distributions. Functionalization of the SBA-15 surfaces was carried out in the synthesis of cobalt nanoparticles. This functionalization plays a crucial role on the infiltration and reaction of the reagents in the pores of the silica. By functionalization of the external surface, a highly hydrophobic surface was achieved, which proved to be sufficient to avoid formation of large cobalt particles outside the silica channels, while the internal functionalization enhances the attraction of cobalt ions to the silica pores, and as a result the nanoparticles grew inside these pores.
  •  
9.
  • Calamba, Katherine, et al. (författare)
  • Effect of nitrogen vacancies on the growth, dislocation structure, and decomposition of single crystal epitaxial (Ti1-xAlx)N-y thin films
  • 2021
  • Ingår i: Acta Materialia. - : Elsevier. - 1359-6454 .- 1873-2453. ; 203
  • Tidskriftsartikel (refereegranskat)abstract
    • The effect of varying nitrogen vacancies on the growth, microstructure, spinodal decomposition and hardness values of predominantly single crystal cubic phase c-(Ti1-xAlx)N-y films was investigated. Epitaxial c-(Ti1-xAlx)N-y films with y = 0.67, 0.79, and 0.92 were grown on MgO(001) and MgO(111) substrates by magnetron sputter deposition. High N vacancy c-(Ti1-xAlx)N-0.67 films deposited on MgO(111) contained coherently oriented w-(0001) structures while segregated conical structures were observed on the films grown on MgO(001). High resolution STEM images revealed that the N-deficient growth conditions induced segregation with small compositional fluctuations that increase with the number of N vacancies. Similarly, strain map analysis of the epitaxial c-(Ti1-xAlx)N-y (001) and (111) films show fluctuations in strain concentration that scales with the number of N vacancies and increases during annealing. The spinodal decomposition coarsening rate of the epitaxial c-(Ti1-xAlx)N-y films was observed to increase with decreasing N vacancies. Nanoindentation showed decreasing trends in hardness of the as-deposited films as the N vacancies increase. Isothermal post-anneal at 1100 degrees C in vacuum for 120 min revealed a continuation in the increase in hardness for the film with the largest number of N vacancies (y = 0.67) while the hardness decreased for the films with y = 0.79 and 0.92. These results suggest that nitrogen-deficient depositions of c-(Ti1-xAlx)N-y films help to promote a self-organized phase segregation, while higher N vacancies generally increase the coherency strain which delays the coarsening process and can influence the hardness at high temperatures.
  •  
10.
  • Escalera, Edwin, et al. (författare)
  • Synthesis of homogeneously dispersed cobalt nanoparticles in the pores of functionalized SBA-15 silica
  • 2012
  • Ingår i: Powder Technology. - : Elsevier. - 0032-5910 .- 1873-328X. ; 221:S1, s. 359-364
  • Tidskriftsartikel (refereegranskat)abstract
    • Cobalt nanoparticles were prepared at room temperature by reducing cobalt sulfate heptahydrate with sodium borohydride and using functionalized SBA-15 mesoporous silica as a hard template. It was found that both external and internal fuctionalization of silica walls play a crucial role on the infiltration and reaction of the reagents in the silica framework. Subsequent heat treatment of the impregnated silica at 500 °C in air or nitrogen atmospheres leads to growth of crystals of the deposited cobalt and formation of cobalt and cobalt oxide nanoparticles, respectively. Dissolution of the silica template by NaOH resulted in well dispersed Co and Co3O4 nanoparticles ranging in size from 2 to 4 nm. The functionalization of the silica was studied by FTIR, N2-physisorption, and thermogravimetric techniques and the obtained nanoparticles were characterized by XRD, TEM and EDX analysis.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 20

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy