SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Odening Katja E.) "

Sökning: WFRF:(Odening Katja E.)

  • Resultat 1-4 av 4
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Lahrouchi, Najim, et al. (författare)
  • Transethnic Genome-Wide Association Study Provides Insights in the Genetic Architecture and Heritability of Long QT Syndrome
  • 2020
  • Ingår i: Circulation. - : Lippincott Williams & Wilkins. - 0009-7322 .- 1524-4539. ; 142:4, s. 324-338
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Long QT syndrome (LQTS) is a rare genetic disorder and a major preventable cause of sudden cardiac death in the young. A causal rare genetic variant with large effect size is identified in up to 80% of probands (genotype positive) and cascade family screening shows incomplete penetrance of genetic variants. Furthermore, a proportion of cases meeting diagnostic criteria for LQTS remain genetically elusive despite genetic testing of established genes (genotype negative). These observations raise the possibility that common genetic variants with small effect size contribute to the clinical picture of LQTS. This study aimed to characterize and quantify the contribution of common genetic variation to LQTS disease susceptibility. Methods: We conducted genome-wide association studies followed by transethnic meta-analysis in 1656 unrelated patients with LQTS of European or Japanese ancestry and 9890 controls to identify susceptibility single nucleotide polymorphisms. We estimated the common variant heritability of LQTS and tested the genetic correlation between LQTS susceptibility and other cardiac traits. Furthermore, we tested the aggregate effect of the 68 single nucleotide polymorphisms previously associated with the QT-interval in the general population using a polygenic risk score. Results: Genome-wide association analysis identified 3 loci associated with LQTS at genome-wide statistical significance (P<5x10(-8)) nearNOS1AP,KCNQ1, andKLF12, and 1 missense variant inKCNE1(p.Asp85Asn) at the suggestive threshold (P<10(-6)). Heritability analyses showed that approximate to 15% of variance in overall LQTS susceptibility was attributable to common genetic variation (h2SNP0.148; standard error 0.019). LQTS susceptibility showed a strong genome-wide genetic correlation with the QT-interval in the general population (r(g)=0.40;P=3.2x10(-3)). The polygenic risk score comprising common variants previously associated with the QT-interval in the general population was greater in LQTS cases compared with controls (P<10-13), and it is notable that, among patients with LQTS, this polygenic risk score was greater in patients who were genotype negative compared with those who were genotype positive (P<0.005). Conclusions: This work establishes an important role for common genetic variation in susceptibility to LQTS. We demonstrate overlap between genetic control of the QT-interval in the general population and genetic factors contributing to LQTS susceptibility. Using polygenic risk score analyses aggregating common genetic variants that modulate the QT-interval in the general population, we provide evidence for a polygenic architecture in genotype negative LQTS.
  •  
2.
  • Castiglione, Alessandro, et al. (författare)
  • Docosahexaenoic acid normalizes QT interval in long QT type 2 transgenic rabbit models in a genotype-specific fashion
  • 2022
  • Ingår i: Europace. - : OXFORD UNIV PRESS. - 1099-5129 .- 1532-2092. ; 24:3, s. 511-522
  • Tidskriftsartikel (refereegranskat)abstract
    • Aim Long QT syndrome (LQTS) is a cardiac channelopathy predisposing to ventricular arrhythmias and sudden cardiac death. Since current therapies often fail to prevent arrhythmic events in certain LQTS subtypes, new therapeutic strategies are needed. Docosahexaenoic acid (DHA) is a polyunsaturated fatty acid, which enhances the repolarizing I-Ks current. Methods and results We investigated the effects of DHA in wild type (WT) and transgenic long QT Type 1 (LQT1; loss of I-Ks), LQT2 (loss of I-Kr), LQT5 (reduction of I-Ks), and LQT2-5 (loss of I-Kr and reduction of I-Ks) rabbits. In vivo ECGs were recorded at baseline and after 10 mu M/kg DHA to assess changes in heart-rate corrected QT (QTc) and short-term variability of QT (STVQT). Ex vivo monophasic action potentials were recorded in Langendorff-perfused rabbit hearts, and action potential duration (APD(75)) and triangulation were assessed. Docosahexaenoic acid significantly shortened QTc in vivo only in WT and LQT2 rabbits, in which both alpha- and beta-subunits of I-K(s)-conducting channels are functionally intact. In LQT2, this led to a normalization of QTc and of its short-term variability. Docosahexaenoic acid had no effect on QTc in LQT1, LQT5, and LQT2-5. Similarly, ex vivo, DHA shortened APD(75) in WT and normalized it in LQT2, and additionally decreased AP triangulation in LQT2. Conclusions Docosahexaenoic acid exerts a genotype-specific beneficial shortening/normalizing effect on QTc and APD(75) and reduces pro-arrhythmia markers STVQT and AP triangulation through activation of I-Ks in LQT2 rabbits but has no effects if either alpha- or beta-subunits to I-Ks are functionally impaired. Docosahexaenoic acid could represent a new genotype-specific therapy in LQT2.
  •  
3.
  • Erlandsdotter, Lisa-Marie, et al. (författare)
  • Long-QT mutations in KCNE1 modulate the 1713-estradiol response of Kv7.1/KCNE1
  • 2023
  • Ingår i: Science Advances. - : AMER ASSOC ADVANCEMENT SCIENCE. - 2375-2548. ; 9:11
  • Tidskriftsartikel (refereegranskat)abstract
    • Estradiol (1713-E2) is implicated in higher arrhythmia risk of women with congenital or acquired long-QT syn-drome (LQTS) compared to men. However, the underlying mechanisms remain poorly understood, and little is known about the impact of LQTS-associated mutations. We show that 1713-E2 inhibits the human cardiac Kv7.1/ KCNE1 channel expressed in Xenopus oocytes. We find that the 1713-E2 effect depends on the Kv7.1 to KCNE1 stoichiometry, and we reveal a critical function of the KCNE1 carboxyl terminus for the effect. LQTS-associated mutations in the KCNE1 carboxyl terminus show a range of responses to 1713-E2, from a wild-type like response to impaired or abolished response. Together, this study increases our understanding of the mechanistic basis for 1713-E2 inhibition of Kv7.1/KCNE1 and demonstrates mutation-dependent responses to 1713-E2. These findings suggest that the 1713-E2 effect on Kv7.1/KCNE1 might contribute to the higher arrhythmia risk of women, par-ticularly in carriers with specific LQTS-associated mutations.
  •  
4.
  • Walsh, Roddy, et al. (författare)
  • Enhancing rare variant interpretation in inherited arrhythmias through quantitative analysis of consortium disease cohorts and population controls
  • 2021
  • Ingår i: Genetics in Medicine. - : Nature Publishing Group. - 1098-3600 .- 1530-0366. ; 23:1, s. 47-58
  • Tidskriftsartikel (refereegranskat)abstract
    • Purpose: Stringent variant interpretation guidelines can lead to high rates of variants of uncertain significance (VUS) for genetically heterogeneous disease like long QT syndrome (LQTS) and Brugada syndrome (BrS). Quantitative and disease-specific customization of American College of Medical Genetics and Genomics/Association for Molecular Pathology (ACMG/AMP) guidelines can address this false negative rate.Methods: We compared rare variant frequencies from 1847 LQTS (KCNQ1/KCNH2/SCN5A) and 3335 BrS (SCN5A) cases from the International LQTS/BrS Genetics Consortia to population-specific gnomAD data and developed disease-specific criteria for ACMG/AMP evidence classes-rarity (PM2/BS1 rules) and case enrichment of individual (PS4) and domain-specific (PM1) variants.Results: Rare SCN5A variant prevalence differed between European (20.8%) and Japanese (8.9%) BrS patients (p = 5.7 x 10(-18)) and diagnosis with spontaneous (28.7%) versus induced (15.8%) Brugada type 1 electrocardiogram (ECG) (p = 1.3 x 10(-13)). Ion channel transmembrane regions and specific N-terminus (KCNH2) and C-terminus (KCNQ1/KCNH2) domains were characterized by high enrichment of case variants and >95% probability of pathogenicity. Applying the customized rules, 17.4% of European BrS and 74.8% of European LQTS cases had (likely) pathogenic variants, compared with estimated diagnostic yields (case excess over gnomAD) of 19.2%/82.1%, reducing VUS prevalence to close to background rare variant frequency.Conclusion: Large case-control data sets enable quantitative implementation of ACMG/AMP guidelines and increased sensitivity for inherited arrhythmia genetic testing.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-4 av 4

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy