Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Ohashi Nagayoshi) "

Sökning: WFRF:(Ohashi Nagayoshi)

  • Resultat 1-3 av 3
Sortera/gruppera träfflistan
  • Akiyama, Eiji, et al. (författare)
  • 2016
  • Ingår i: Astronomical Journal. - 0004-6256 .- 1538-3881. ; 152:6
  • Tidskriftsartikel (refereegranskat)abstract
    • <p>Dust trapping accelerates the coagulation of dust particles, and, thus, it represents an initial step toward the formation of planetesimals. We report H-band (1.6 mu m) linear polarimetric observations and 0.87 mm interferometric continuum observations toward a transitional disk around LkH alpha 330. As a. result, a pair of spiral arms were detected in the H-band emission, and an asymmetric (potentially arm-like) structure was detected in the 0.87 mm continuum emission. We discuss the origin of the spiral arm and the asymmetric structure. and suggest that a massive unseen planet is the most plausible explanation. The possibility of dust trapping and grain growth causing the asymmetric structure was also investigated through the opacity index (beta) by plotting the observed spectral energy distribution slope between 0.87 mm from our Submillimeter Array observation and 1.3 mm from literature. The results imply that grains are indistinguishable from interstellar medium-like dust in the east side (beta = 2.0 +/- 0.5) but are much smaller in the west side beta = 0.7(-0.4)(+0.5), indicating differential dust size distribution between the two sides of the disk. Combining the results of near-infrared and submillimeter observations, we conjecture that the spiral arms exist at the upper surface and an asymmetric structure resides in the disk interior. Future observations at centimeter wavelengths and differential polarization imaging in other bands (Y-K) with extreme AO imagers are required to understand how large dust grains form and to further explore the dust distribution in the disk.</p>
  • Cataldi, Gianni, et al. (författare)
  • The Surprisingly Low Carbon Mass in the Debris Disk around HD 32297
  • 2020
  • Ingår i: Astrophysical Journal. - 0004-637X .- 1538-4357. ; 892:2
  • Tidskriftsartikel (refereegranskat)abstract
    • <p>Gas has been detected in a number of debris disks. It is likely secondary, i.e., produced by colliding solids. Here, we report ALMA Band 8 observations of neutral carbon in the CO-rich debris disk around the 15-30 Myr old A-type star HD 32297. We find that C-0 is located in a ring at similar to 110 au with an FWHM of similar to 80 au and has a mass of (3.5 0.2) x 10(-3) M-circle plus. Naively, such a surprisingly small mass can be accumulated from CO photodissociation in a time as short as similar to 10(4) yr. We develop a simple model for gas production and destruction in this system, properly accounting for CO self-shielding and shielding by neutral carbon, and introducing a removal mechanism for carbon gas. We find that the most likely scenario to explain both C-0 and CO observations is one where the carbon gas is rapidly removed on a timescale of order a thousand years and the system maintains a very high CO production rate of similar to 15 M-circle plus Myr(-1), much higher than the rate of dust grind-down. We propose a possible scenario to meet these peculiar conditions: the capture of carbon onto dust grains, followed by rapid CO re-formation and rerelease. In steady state, CO would continuously be recycled, producing a CO-rich gas ring that shows no appreciable spreading over time. This picture might be extended to explain other gas-rich debris disks.</p>
  • Doi, Yasuo, et al. (författare)
  • The JCMT BISTRO Survey: Magnetic Fields Associated with a Network of Filaments in NGC 1333
  • 2020
  • Ingår i: Astrophysical Journal. - 1538-4357 .- 0004-637X. ; 899:1
  • Tidskriftsartikel (refereegranskat)abstract
    • © 2020. The American Astronomical Society. All rights reserved.. We present new observations of the active star formation region NGC 1333 in the Perseus molecular cloud complex from the James Clerk Maxwell Telescope B-Fields In Star-forming Region Observations (BISTRO) survey with the POL-2 instrument. The BISTRO data cover the entire NGC 1333 complex (∼1.5 pc ? 2 pc) at 0.02 pc resolution and spatially resolve the polarized emission from individual filamentary structures for the first time. The inferred magnetic field structure is complex as a whole, with each individual filament aligned at different position angles relative to the local field orientation. We combine the BISTRO data with low- and high- resolution data derived from Planck and interferometers to study the multiscale magnetic field structure in this region. The magnetic field morphology drastically changes below a scale of ∼1 pc and remains continuous from the scales of filaments (∼0.1 pc) to that of protostellar envelopes (∼0.005 pc or ∼1000 au). Finally, we construct simple models in which we assume that the magnetic field is always perpendicular to the long axis of the filaments. We demonstrate that the observed variation of the relative orientation between the filament axes and the magnetic field angles are well reproduced by this model, taking into account the projection effects of the magnetic field and filaments relative to the plane of the sky. These projection effects may explain the apparent complexity of the magnetic field structure observed at the resolution of BISTRO data toward the filament network.
Skapa referenser, mejla, bekava och länka
  • Resultat 1-3 av 3
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy