SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Ohlsson Claes 1965) ;pers:(Nethander Maria 1980)"

Sökning: WFRF:(Ohlsson Claes 1965) > Nethander Maria 1980

  • Resultat 1-10 av 51
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Austin, Thomas R, et al. (författare)
  • Large-scale circulating proteome association study (CPAS) meta-analysis identifies circulating proteins and pathways predicting incident hip fractures.
  • 2024
  • Ingår i: Journal of bone and mineral research : the official journal of the American Society for Bone and Mineral Research. - 1523-4681.
  • Tidskriftsartikel (refereegranskat)abstract
    • Hip fractures are associated with significant disability, high cost, and mortality. However, the exact biological mechanisms underlying susceptibility to hip fractures remain incompletely understood. In an exploratory search of the underlying biology as reflected through the circulating proteome, we performed a comprehensive Circulating Proteome Association Study (CPAS) meta-analysis for incident hip fractures. Analyses included 6430 subjects from two prospective cohort studies (Cardiovascular Health Study and Trøndelag Health Study) with circulating proteomics data (aptamer-based 5 K SomaScan version 4.0 assay; 4979 aptamers). Associations between circulating protein levels and incident hip fractures were estimated for each cohort using age and sex-adjusted Cox regression models. Participants experienced 643 incident hip fractures. Compared with the individual studies, inverse-variance weighted meta-analyses yielded more statistically significant associations, identifying 23 aptamers associated with incident hip fractures (conservative Bonferroni correction 0.05/4979, P < 1.0 × 10-5). The aptamers most strongly associated with hip fracture risk corresponded to two proteins of the growth hormone/insulin growth factor system (GHR and IGFBP2), as well as GDF15 and EGFR. High levels of several inflammation-related proteins (CD14, CXCL12, MMP12, ITIH3) were also associated with increased hip fracture risk. Ingenuity pathway analysis identified reduced LXR/RXR activation and increased acute phase response signaling to be overrepresented among those proteins associated with increased hip fracture risk. These analyses identified several circulating proteins and pathways consistently associated with incident hip fractures. These findings underscore the usefulness of the meta-analytic approach for comprehensive CPAS in a similar manner as has previously been observed for large-scale human genetic studies. Future studies should investigate the underlying biology of these potential novel drug targets.
  •  
2.
  •  
3.
  • Ben-Avraham, Dan, et al. (författare)
  • The complex genetics of gait speed : Genome-wide meta-analysis approach
  • 2017
  • Ingår i: Aging. - : Impact Journals, LLC. - 1945-4589. ; 9:1, s. 209-246
  • Tidskriftsartikel (refereegranskat)abstract
    • Emerging evidence suggests that the basis for variation in late-life mobility is attributable, in part, to genetic factors, which may become increasingly important with age. Our objective was to systematically assess the contribution of genetic variation to gait speed in older individuals. We conducted a meta-analysis of gait speed GWASs in 31,478 older adults from 17 cohorts of the CHARGE consortium, and validated our results in 2,588 older adults from 4 independent studies. We followed our initial discoveries with network and eQTL analysis of candidate signals in tissues. The meta-analysis resulted in a list of 536 suggestive genome wide significant SNPs in or near 69 genes. Further interrogation with Pathway Analysis placed gait speed as a polygenic complex trait in five major networks. Subsequent eQTL analysis revealed several SNPs significantly associated with the expression of PRSS16, WDSUB1 and PTPRT, which in addition to the meta-analysis and pathway suggested that genetic effects on gait speed may occur through synaptic function and neuronal development pathways. No genome-wide significant signals for gait speed were identified from this moderately large sample of older adults, suggesting that more refined physical function phenotypes will be needed to identify the genetic basis of gait speed in aging.
  •  
4.
  • Bygdell, Maria, et al. (författare)
  • Childhood BMI is inversely associated with pubertal timing in normal-weight but not overweight boys.
  • 2018
  • Ingår i: The American journal of clinical nutrition. - : Elsevier BV. - 1938-3207 .- 0002-9165. ; 108:6, s. 1259-1263
  • Tidskriftsartikel (refereegranskat)abstract
    • An inverse association between childhood body mass index (BMI; in kg/m2) and pubertal timing is well established for girls. Among boys, studies are scarce and the results inconclusive.We aimed to determine the association between childhood BMI and age at peak height velocity (PHV) in boys.We collected height and weight measurements between 6.5 and 22 y of age for boys born 1945-1961 (original cohort; n = 31,971; mean ± SD childhood BMI: 15.74 ± 1.41; age at PHV: 14.06 ± 1.11 y) and 1981-1996 (replication cohort; n = 1465; childhood BMI: 16.47 ± 2.06; age at PHV: 13.71 ± 1.08 y) attending schools in Gothenburg, Sweden, and examined at mandatory military conscription. Age at PHV was obtained from curve-fitting of measured heights with the use of a modified Infancy-Childhood-Puberty model.In the original cohort, childhood BMI was inversely associated with age at PHV (P < 0.001) and a significant quadratic term for childhood BMI (P < 0.001) indicated the nonlinearity of this association. Via piecewise linear regression, we identified a threshold for the association at a childhood BMI of 18.42. A significant inverse association was observed below (β: -0.17 y/BMI unit; 95% CI: -0.18, -0.16 y/BMI unit) but not above (β: 0.02 y/BMI unit; 95% CI: -0.03, 0.06 y/BMI unit) this childhood BMI threshold. For every unit increase in childhood BMI, age at PHV was ∼2 mo earlier up to the childhood BMI threshold. Similar results were observed in the replication cohort, demonstrating a significant inverse association below (β: -0.16; 95% CI: -0.21, -0.11) but not above (β: -0.03; 95% CI: -0.11, 0.05) the childhood BMI threshold. The identified threshold was close to the cutoffs for overweight at 8 y of age, and childhood BMI was inversely associated with age at PHV below but not above the overweight cutoffs.The present findings establish an inverse association between childhood BMI and pubertal timing in normal-weight but not overweight boys.
  •  
5.
  • Celind, Jimmy, et al. (författare)
  • Childhood body mass index is associated with risk of adult colon cancer in men: An association modulated by pubertal change in body mass index
  • 2019
  • Ingår i: Cancer Epidemiology, Biomarkers and Prevention. - 1055-9965 .- 1538-7755. ; 28:5, s. 974-979
  • Tidskriftsartikel (refereegranskat)abstract
    • - Background: The relative contribution of childhood and pubertal body mass index (BMI) for the risk of adult colorectal cancer is not known. The aim of this study was to evaluate the independent associations for childhood BMI and pubertal BMI change with risk of colorectal cancer in men. Methods: We included 37,663 men born in 1946 to 1961 who had weight and height measured at 8 (childhood) and 20 (young adult age) years of age available from the BMI Epidemiology Study. Information on colorectal cancer was retrieved from the Swedish National Patient Register (257 cases of colon cancer and 159 cases of rectal cancer). Results: Childhood BMI at 8 years of age [HR, 1.19 per SD increase; 95% confidence interval (CI), 1.06–1.33], but not pubertal BMI change (HR, 1.02; 95% CI, 0.90–1.15), was associated with increased risk of colon cancer. Due to a significant interaction between childhood BMI and pubertal BMI change (P < 0.001), we stratified the analyses according to the median of pubertal BMI change. Childhood BMI was associated with risk of colon cancer in individuals with a pubertal BMI change above, but not below, the median (above: HR ¼ 1.48, 95% CI, 1.26–1.74; below: HR ¼ 0.95, 95% CI, 0.80–1.12). Neither childhood BMI nor pubertal BMI change was associated with rectal cancer. Conclusions: High childhood BMI was associated with increased risk of colon cancer only if it was followed by a pubertal BMI increase above the median. Impact: Further studies should evaluate prepubertal childhood BMI in relation to pubertal BMI change and BMI in middle age for the risk of colon cancer. © 2019 American Association for Cancer Research.
  •  
6.
  • Crawford, A. A., et al. (författare)
  • Variation in the SERPINA6/SERPINA1 locus alters morning plasma cortisol, hepatic corticosteroid binding globulin expression, gene expression in peripheral tissues, and risk of cardiovascular disease
  • 2021
  • Ingår i: Journal of Human Genetics. - : Springer Science and Business Media LLC. - 1434-5161 .- 1435-232X. ; 66:6
  • Tidskriftsartikel (refereegranskat)abstract
    • The stress hormone cortisol modulates fuel metabolism, cardiovascular homoeostasis, mood, inflammation and cognition. The CORtisol NETwork (CORNET) consortium previously identified a single locus associated with morning plasma cortisol. Identifying additional genetic variants that explain more of the variance in cortisol could provide new insights into cortisol biology and provide statistical power to test the causative role of cortisol in common diseases. The CORNET consortium extended its genome-wide association meta-analysis for morning plasma cortisol from 12,597 to 25,314 subjects and from similar to 2.2 M to similar to 7 M SNPs, in 17 population-based cohorts of European ancestries. We confirmed the genetic association with SERPINA6/SERPINA1. This locus contains genes encoding corticosteroid binding globulin (CBG) and alpha 1-antitrypsin. Expression quantitative trait loci (eQTL) analyses undertaken in the STARNET cohort of 600 individuals showed that specific genetic variants within the SERPINA6/SERPINA1 locus influence expression of SERPINA6 rather than SERPINA1 in the liver. Moreover, trans-eQTL analysis demonstrated effects on adipose tissue gene expression, suggesting that variations in CBG levels have an effect on delivery of cortisol to peripheral tissues. Two-sample Mendelian randomisation analyses provided evidence that each genetically-determined standard deviation (SD) increase in morning plasma cortisol was associated with increased odds of chronic ischaemic heart disease (0.32, 95% CI 0.06-0.59) and myocardial infarction (0.21, 95% CI 0.00-0.43) in UK Biobank and similarly in CARDIoGRAMplusC4D. These findings reveal a causative pathway for CBG in determining cortisol action in peripheral tissues and thereby contributing to the aetiology of cardiovascular disease.
  •  
7.
  • Eriksson, Anna-Lena, 1971, et al. (författare)
  • Genetic Determinants of Circulating Estrogen Levels and Evidence of a Causal Effect of Estradiol on Bone Density in Men.
  • 2018
  • Ingår i: Journal of Clinical Endocrinology and Metabolism. - : The Endocrine Society. - 0021-972X .- 1945-7197. ; 103:3, s. 991-1004
  • Tidskriftsartikel (refereegranskat)abstract
    • Serum estradiol (E2) and estrone (E1) levels exhibit substantial heritability.To investigate the genetic regulation of serum E2 and E1 in men.Genome-wide association study in 11,097 men of European origin from nine epidemiological cohorts.Genetic determinants of serum E2 and E1 levels.Variants in/near CYP19A1 demonstrated the strongest evidence for association with E2, resolving to three independent signals. Two additional independent signals were found on the X chromosome; FAMily with sequence similarity 9, member B (FAM9B), rs5934505 (P = 3.4 × 10-8) and Xq27.3, rs5951794 (P = 3.1 × 10-10). E1 signals were found in CYP19A1 (rs2899472, P = 5.5 × 10-23), in Tripartite motif containing 4 (TRIM4; rs17277546, P = 5.8 × 10-14), and CYP11B1/B2 (rs10093796, P = 1.2 × 10-8). E2 signals in CYP19A1 and FAM9B were associated with bone mineral density (BMD). Mendelian randomization analysis suggested a causal effect of serum E2 on BMD in men. A 1 pg/mL genetically increased E2 was associated with a 0.048 standard deviation increase in lumbar spine BMD (P = 2.8 × 10-12). In men and women combined, CYP19A1 alleles associated with higher E2 levels were associated with lower degrees of insulin resistance.Our findings confirm that CYP19A1 is an important genetic regulator of E2 and E1 levels and strengthen the causal importance of E2 for bone health in men. We also report two independent loci on the X-chromosome for E2, and one locus each in TRIM4 and CYP11B1/B2, for E1.
  •  
8.
  • Eriksson, Anna L, et al. (författare)
  • Serum Glycine Levels Are Associated With Cortical Bone Properties and Fracture Risk in Men.
  • 2021
  • Ingår i: The Journal of clinical endocrinology and metabolism. - : The Endocrine Society. - 1945-7197 .- 0021-972X. ; 106:12, s. e5021-e5029
  • Tidskriftsartikel (refereegranskat)abstract
    • In a recent study a pattern of 27 metabolites, including serum glycine, associated with bone mineral density (BMD).To investigate associations for serum and urinary glycine levels with BMD, bone microstructure, and fracture risk in men.In the population-based Osteoporotic Fractures in Men (MrOS) Sweden study (men, 69-81 years) serum glycine and BMD were measured at baseline (n = 965) and 5-year follow-up (n = 546). Cortical and trabecular bone parameters of the distal tibia were measured at follow-up using high-resolution peripheral quantitative computed tomography. Urinary (n = 2682) glycine was analyzed at baseline. X-ray-validated fractures (n = 594) were ascertained during a median follow-up of 9.6 years. Associations were evaluated using linear regression (bone parameters) or Cox regression (fractures).Circulating glycine levels were inversely associated with femoral neck (FN)-BMD. A meta-analysis (n = 7543) combining MrOS Sweden data with data from 3 other cohorts confirmed a robust inverse association between serum glycine levels and FN-BMD (P = 7.7 × 10-9). Serum glycine was inversely associated with the bone strength parameter failure load in the distal tibia (P = 0.002), mainly as a consequence of an inverse association with cortical cross-sectional area and a direct association with cortical porosity. Both serum and urinary glycine levels predicted major osteoporotic fractures (serum: hazard ratio [HR] per SD increase = 1.22, 95% CI, 1.05-1.43; urine: HR = 1.13, 95% CI, 1.02-1.24). These fracture associations were only marginally reduced in models adjusted by FRAX with BMD.Serum and urinary glycine are indirectly associated with FN-BMD and cortical bone strength, and directly associated with fracture risk in men.
  •  
9.
  • Forgetta, V., et al. (författare)
  • Development of a polygenic risk score to improve screening for fracture risk: A genetic risk prediction study
  • 2020
  • Ingår i: PLoS medicine. - : Public Library of Science (PLoS). - 1549-1277 .- 1549-1676. ; 17:7
  • Tidskriftsartikel (refereegranskat)abstract
    • Background Since screening programs identify only a small proportion of the population as eligible for an intervention, genomic prediction of heritable risk factors could decrease the number needing to be screened by removing individuals at low genetic risk. We therefore tested whether a polygenic risk score for heel quantitative ultrasound speed of sound (SOS)-a heritable risk factor for osteoporotic fracture-can identify low-risk individuals who can safely be excluded from a fracture risk screening program. Methods and findings A polygenic risk score for SOS was trained and selected in 2 separate subsets of UK Biobank (comprising 341,449 and 5,335 individuals). The top-performing prediction model was termed "gSOS", and its utility in fracture risk screening was tested in 5 validation cohorts using the National Osteoporosis Guideline Group clinical guidelines (N= 10,522 eligible participants). All individuals were genome-wide genotyped and had measured fracture risk factors. Across the 5 cohorts, the average age ranged from 57 to 75 years, and 54% of studied individuals were women. The main outcomes were the sensitivity and specificity to correctly identify individuals requiring treatment with and without genetic prescreening. The reference standard was a bone mineral density (BMD)-based Fracture Risk Assessment Tool (FRAX) score. The secondary outcomes were the proportions of the screened population requiring clinical-risk-factor-based FRAX (CRF-FRAX) screening and BMD-based FRAX (BMD-FRAX) screening. gSOS was strongly correlated with measured SOS (r(2)= 23.2%, 95% CI 22.7% to 23.7%). Without genetic prescreening, guideline recommendations achieved a sensitivity and specificity for correct treatment assignment of 99.6% and 97.1%, respectively, in the validation cohorts. However, 81% of the population required CRF-FRAX tests, and 37% required BMD-FRAX tests to achieve this accuracy. Using gSOS in prescreening and limiting further assessment to those with a low gSOS resulted in small changes to the sensitivity and specificity (93.4% and 98.5%, respectively), but the proportions of individuals requiring CRF-FRAX tests and BMD-FRAX tests were reduced by 37% and 41%, respectively. Study limitations include a reliance on cohorts of predominantly European ethnicity and use of a proxy of fracture risk. Conclusions Our results suggest that the use of a polygenic risk score in fracture risk screening could decrease the number of individuals requiring screening tests, including BMD measurement, while maintaining a high sensitivity and specificity to identify individuals who should be recommended an intervention. Author summaryWhy was this study done? Osteoporosis screening identifies only a small proportion of the screened population to be eligible for intervention. The prediction of heritable risk factors using polygenic risk scores could decrease the number of screened individuals by reassuring those with low genetic risk. We investigated whether the genetic prediction of heel quantitative ultrasound speed of sound (SOS)-a heritable risk factor for osteoporotic fracture-could be incorporated into an established screening guideline to identify individuals at low risk for osteoporosis. What did the researchers do and find? Using UK Biobank, we developed a polygenic risk score (gSOS) consisting of 21,717 genetic variants that was strongly correlated with SOS ( = 23.2%). Using the National Osteoporosis Guideline Group clinical assessment guidelines in 5 validation cohorts, we estimate that reassuring individuals with a high gSOS, rather than doing further assessments, could reduce the number of clinical-risk-factor-based Fracture Risk Assessment Tool (FRAX) tests and bone-density-measurement-based FRAX tests by 37% and 41%, respectively, while maintaining a high sensitivity and specificity to identify individuals who should be recommended an intervention. What do these findings mean? We show that genetic pre-screening could reduce the number of screening tests needed to identify individuals at risk of osteoporotic fractures. Therefore, the potential exists to improve the efficiency of osteoporosis screening programs without large losses in sensitivity or specificity to identify individuals who should receive an intervention. Further translational studies are needed to test the clinical applications of this polygenic risk score; however, our work shows how such scores could be tested in the clinic.
  •  
10.
  • Funck-Brentano, Thomas, et al. (författare)
  • Causal Factors for Knee, Hip, and Hand Osteoarthritis: A Mendelian Randomization Study in the UK Biobank
  • 2019
  • Ingår i: Arthritis & Rheumatology. - : Wiley. - 2326-5191 .- 2326-5205. ; 71:10, s. 1634-1641
  • Tidskriftsartikel (refereegranskat)abstract
    • Objective There is no curative treatment for osteoarthritis (OA), which is the most common form of arthritis. This study was undertaken to identify causal risk factors of knee, hip, and hand OA. Methods Individual-level data from 384,838 unrelated participants in the UK Biobank study were analyzed. Mendelian randomization (MR) analyses were performed to test for causality for body mass index (BMI), bone mineral density (BMD), serum high-density lipoprotein cholesterol, low-density lipoprotein cholesterol, and triglyceride levels, type 2 diabetes, systolic blood pressure (BP), and C-reactive protein (CRP) levels. The primary outcome measure was OA determined using hospital diagnoses (all sites, n = 48,431; knee, n = 19,727; hip, n = 11,875; hand, n = 2,330). Odds ratios (ORs) with 95% confidence intervals (95% CIs) were calculated. Results MR analyses demonstrated a robust causal association of genetically determined BMI with all OA (OR per SD increase 1.57 [95% CI 1.44-1.71]), and with knee OA and hip OA, but not with hand OA. Increased genetically determined femoral neck BMD was causally associated with all OA (OR per SD increase 1.14 [95% CI 1.06-1.22]), knee OA, and hip OA. Low systolic BP was causally associated with all OA (OR per SD decrease 1.55 [95% CI 1.29-1.87]), knee OA, and hip OA. There was no evidence of causality for the other tested metabolic factors or CRP level. Conclusion Our findings indicate that BMI exerts a major causal effect on the risk of OA at weight-bearing joints, but not at the hand. Evidence of causality of all OA, knee OA, and hip OA was also observed for high femoral neck BMD and low systolic BP. However, we found no evidence of causality for other metabolic factors or CRP level.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 51

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy