SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Oinarov R.) "

Sökning: WFRF:(Oinarov R.)

  • Resultat 1-4 av 4
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  •  
2.
  • Persson, Lars-Erik, et al. (författare)
  • Weighted inequalities of Hardy type for matrix operators: The case q
  • 2007
  • Ingår i: Mathematical Inequalities & Applications. - 1331-4343 .- 1848-9966. ; 10:4, s. 843-861
  • Tidskriftsartikel (refereegranskat)abstract
    • A non-negative triangular matrix operator is considered in weighted Lebesgue spaces ofsequences. Under some additional conditions on the matrix, some new weight characterizationsfor discrete Hardy type inequalities with matrix operator are proved for the case 1 < q < p < ∞.Some further results are pointed out.
  •  
3.
  • Arendarenko, L. S., et al. (författare)
  • Some New Hardy-type Integral Inequalities on Cones of Monotone Functions
  • 2013
  • Ingår i: Advances in Harmonic Analysis and Operator Theory. - Basel : Encyclopedia of Global Archaeology/Springer Verlag. - 9783034805155 - 9783034805162 ; , s. 77-89
  • Bokkapitel (refereegranskat)abstract
    • Some new Hardy-type inequalities with Hardy-Volterra integral operators on the cones of monotone functions are obtained. The case 1 < p ≤ q < ∞ is considered and the involved kernels satisfy conditions which are less restrictive than the classical Oinarov condition.
  •  
4.
  • Oinarov, R., et al. (författare)
  • Weighted inequalities for a class of matrix operators : the case of p≤q
  • 2009
  • Ingår i: Mathematical Inequalities & Applications. - 1331-4343 .- 1848-9966. ; 12:4, s. 891-903
  • Tidskriftsartikel (refereegranskat)abstract
    • We prove a new discrete Hardy-type inequality ||A/||q,u ≤ C||f||p,v, where the matrix operator A is defined by (Af) i:= Σj=1i ai,jfj, ai,j ≥ 0. Moreover, we study die problem of compactness of the operator A, and die dual result is stated
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-4 av 4
 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy