SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Okbay Aysu) ;lar1:(uu)"

Search: WFRF:(Okbay Aysu) > Uppsala University

  • Result 1-5 of 5
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Becker, Joel, et al. (author)
  • Resource profile and user guide of the Polygenic Index Repository
  • 2021
  • In: Nature Human Behaviour. - : Nature Research (part of Springer Nature). - 2397-3374. ; 51:6, s. 694-695
  • Journal article (peer-reviewed)abstract
    • Polygenic indexes (PGIs) are DNA-based predictors. Their value for research in many scientific disciplines is growing rapidly. As a resource for researchers, we used a consistent methodology to construct PGIs for 47 phenotypes in 11 datasets. To maximize the PGIs’ prediction accuracies, we constructed them using genome-wide association studies—some not previously published—from multiple data sources, including 23andMe and UK Biobank. We present a theoretical framework to help interpret analyses involving PGIs. A key insight is that a PGI can be understood as an unbiased but noisy measure of a latent variable we call the ‘additive SNP factor’. Regressions in which the true regressor is this factor but the PGI is used as its proxy therefore suffer from errors-in-variables bias. We derive an estimator that corrects for the bias, illustrate the correction, and make a Python tool for implementing it publicly available. © 2021, The Author(s), under exclusive licence to Springer Nature Limited.
  •  
2.
  • Dawes, Christopher T., et al. (author)
  • A polygenic score for educational attainment partially predicts voter turnout
  • 2021
  • In: Proceedings of the National Academy of Sciences of the United States of America. - : Proceedings of the National Academy of Sciences (PNAS). - 0027-8424 .- 1091-6490. ; 118:50
  • Journal article (peer-reviewed)abstract
    • Twin and adoption studies have shown that individual differences in political participation can be explained, in part, by genetic variation. However, these research designs cannot identify which genes are related to voting or the pathways through which they exert influence, and their conclusions rely on possibly restrictive assumptions. In this study, we use three different US samples and a Swedish sample to test whether genes that have been identified as associated with educational attainment, one of the strongest correlates of political participation, predict self-reported and validated voter turnout. We find that a polygenic score capturing individuals' genetic propensity to acquire education is significantly related to turnout. The strongest associations we observe are in second-ordermidterm elections in the United States and European Parliament elections in Sweden, which tend to be viewed as less important by voters, parties, and the media and thus present a more information-poor electoral environment for citizens to navigate. A within-family analysis suggests that individuals' education-linked genes directly affect their voting behavior, but, for second-order elections, it also reveals evidence of genetic nurture. Finally, a mediation analysis suggests that educational attainment and cognitive ability combine to account for between 41% and 63% of the relationship between the genetic propensity to acquire education and voter turnout.
  •  
3.
  • Lee, James J, et al. (author)
  • Gene discovery and polygenic prediction from a genome-wide association study of educational attainment in 1.1 million individuals.
  • 2018
  • In: Nature genetics. - : Springer Science and Business Media LLC. - 1546-1718 .- 1061-4036. ; 50:8, s. 1112-1121
  • Journal article (peer-reviewed)abstract
    • Here we conducted a large-scale genetic association analysis of educational attainment in a sample of approximately 1.1million individuals and identify 1,271independent genome-wide-significant SNPs. For the SNPs taken together, we found evidence of heterogeneous effects across environments. The SNPs implicate genes involved in brain-development processes and neuron-to-neuron communication. In a separate analysis of the X chromosome, we identify 10independent genome-wide-significant SNPs and estimate a SNP heritability of around 0.3% in both men and women, consistent with partial dosage compensation. A joint (multi-phenotype) analysis of educational attainment and three related cognitive phenotypes generates polygenic scores that explain 11-13% of the variance in educational attainment and 7-10% of the variance in cognitive performance. This prediction accuracy substantially increases the utility of polygenic scores as tools in research.
  •  
4.
  • Okbay, Aysu, et al. (author)
  • Polygenic prediction of educational attainment within and between families from genome-wide association analyses in 3 million individuals.
  • 2022
  • In: Nature genetics. - : Springer Science and Business Media LLC. - 1546-1718 .- 1061-4036. ; 54:4, s. 437-449
  • Journal article (peer-reviewed)abstract
    • We conduct a genome-wide association study (GWAS) of educational attainment (EA) in a sample of ~3 million individuals and identify 3,952 approximately uncorrelated genome-wide-significant single-nucleotide polymorphisms (SNPs). A genome-wide polygenic predictor, or polygenic index (PGI), explains 12-16% of EA variance and contributes to risk prediction for ten diseases. Direct effects (i.e., controlling for parental PGIs) explain roughly half the PGI's magnitude of association with EA and other phenotypes. The correlation between mate-pair PGIs is far too large to be consistent with phenotypic assortment alone, implying additional assortment on PGI-associated factors. In an additional GWAS of dominance deviations from the additive model, we identify no genome-wide-significant SNPs, and a separate X-chromosome additive GWAS identifies 57.
  •  
5.
  • Smith, Jennifer A, et al. (author)
  • Genome-wide association study identifies 74 loci associated with educational attainment
  • 2016
  • In: Nature (London). - : Springer Science and Business Media LLC. - 1476-4687 .- 0028-0836. ; 533:7604, s. 539-542
  • Journal article (peer-reviewed)abstract
    • Educational attainment is strongly influenced by social and other environmental factors, but genetic factors are estimated to account for at least 20% of the variation across individuals. Here we report the results of a genome-wide association study (GWAS) for educational attainment that extends our earlier discovery sample of 101,069 individuals to 293,723 individuals, and a replication study in an independent sample of 111,349 individuals from the UK Biobank. We identify 74 genome-wide significant loci associated with the number of years of schooling completed. Single-nucleotide polymorphisms associated with educational attainment are disproportionately found in genomic regions regulating gene expression in the fetal brain. Candidate genes are preferentially expressed in neural tissue, especially during the prenatal period, and enriched for biological pathways involved in neural development. Our findings demonstrate that, even for a behavioural phenotype that is mostly environmentally determined, a well-powered GWAS identifies replicable associated genetic variants that suggest biologically relevant pathways. Because educational attainment is measured in large numbers of individuals, it will continue to be useful as a proxy phenotype in efforts to characterize the genetic influences of related phenotypes, including cognition and neuropsychiatric diseases.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-5 of 5

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view