SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Olbrich P) ;pers:(Olbrich P)"

Sökning: WFRF:(Olbrich P) > Olbrich P

  • Resultat 1-10 av 19
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  •  
2.
  •  
3.
  •  
4.
  • Drexler, C, et al. (författare)
  • Magnetic quantum ratchet effect in graphene
  • 2013
  • Ingår i: Nature Nanotechnology. - : Nature Publishing Group. - 1748-3387 .- 1748-3395. ; 8:2, s. 104-107
  • Tidskriftsartikel (refereegranskat)abstract
    • A periodically driven system with spatial asymmetry can exhibit a directed motion facilitated by thermal or quantum fluctuations(1). This so-called ratchet effect(2) has fascinating ramifications in engineering and natural sciences(3-18). Graphene(19) is nominally a symmetric system. Driven by a periodic electric field, no directed electric current should flow. However, if the graphene has lost its spatial symmetry due to its substrate or adatoms, an electronic ratchet motion can arise. We report an experimental demonstration of such an electronic ratchet in graphene layers, proving the underlying spatial asymmetry. The orbital asymmetry of the Dirac fermions is induced by an in-plane magnetic field, whereas the periodic driving comes from terahertz radiation. The resulting magnetic quantum ratchet transforms the a.c. power into a d.c. current, extracting work from the out-of-equilibrium electrons driven by undirected periodic forces. The observation of ratchet transport in this purest possible two-dimensional system indicates that the orbital effects may appear and be substantial in other two-dimensional crystals such as boron nitride, molybdenum dichalcogenides and related heterostructures. The measurable orbital effects in the presence of an in-plane magnetic field provide strong evidence for the existence of structure inversion asymmetry in graphene.
  •  
5.
  • Drexler, C., et al. (författare)
  • Magnetic quantum ratchet effect in graphene
  • 2013
  • Ingår i: Nature Nanotechnology. - 1748-3387 .- 1748-3395. ; 8:2, s. 104-107
  • Tidskriftsartikel (refereegranskat)abstract
    • A periodically driven system with spatial asymmetry can exhibit a directed motion facilitated by thermal or quantum fluctuations(1). This so-called ratchet effect(2) has fascinating ramifications in engineering and natural sciences(3-18). Graphene(19) is nominally a symmetric system. Driven by a periodic electric field, no directed electric current should flow. However, if the graphene has lost its spatial symmetry due to its substrate or adatoms, an electronic ratchet motion can arise. We report an experimental demonstration of such an electronic ratchet in graphene layers, proving the underlying spatial asymmetry. The orbital asymmetry of the Dirac fermions is induced by an in-plane magnetic field, whereas the periodic driving comes from terahertz radiation. The resulting magnetic quantum ratchet transforms the a.c. power into a d.c. current, extracting work from the out-of-equilibrium electrons driven by undirected periodic forces. The observation of ratchet transport in this purest possible two-dimensional system indicates that the orbital effects may appear and be substantial in other two-dimensional crystals such as boron nitride, molybdenum dichalcogenides and related heterostructures. The measurable orbital effects in the presence of an in-plane magnetic field provide strong evidence for the existence of structure inversion asymmetry in graphene.
  •  
6.
  •  
7.
  • Ganichev, S.D., et al. (författare)
  • Magnetic quantum ratchet effect in graphene
  • 2013
  • Ingår i: International Conference on Infrared, Millimeter, and Terahertz Waves, IRMMW-THz. - 2162-2027 .- 2162-2035. - 9781467347174
  • Konferensbidrag (refereegranskat)abstract
    • We report on the observation of magnetic quantum ratchet (MQR) effect induced by electric field of terahertz radiation in single-layer graphene samples subjected to an inplane magnetic field. We show that the dc electric current stems from the orbital asymmetry of the Dirac fermions induced by an in-plane magnetic field, while the periodic driving comes from terahertz radiation. A microscopic theory of the observed effect is developed being in a good qualitative agreement with the experiment. The observation of the ratchet transport in the purest possible two-dimensional system indicates that the orbital effects may appear and be substantial in other 2D crystals, such as boron nitride, molybdenum dichalcogenides, and related heterostructures. The measurable orbital effects in the presence of an in-plane magnetic field give strong evidence for the existence of structure inversion asymmetry in graphene.
  •  
8.
  • Drexler, C., et al. (författare)
  • Reststrahlen Band assisted photocurrents in graphene
  • 2013
  • Ingår i: International Conference on Infrared, Millimeter, and Terahertz Waves, IRMMW-THz. - 2162-2027 .- 2162-2035. - 9781467347174
  • Konferensbidrag (refereegranskat)abstract
    • We report on the experimental and theoretical study of the Reststrahlen Band assisted photocurrents in epitaxial grown graphene on SiC. We show that excitation of graphene with infrared radiation results in a dc current. We demonstrate that photocurrent in response to linearly polarized radiation exhibit a resonance enhancement in the frequency range of the Reststrahlen Band of the SiC substrate. By contrast the photocurrent excited by circularly polarized radiation is suppressed in the same spectral range. The developed theory is in agreement with the data and reveals a strong influence of the Reststrahl Band on the high frequency transport in graphene.
  •  
9.
  • Drexler, C., et al. (författare)
  • Terahertz radiation induced edge currents in graphene
  • 2011
  • Ingår i: RMMW-THz 2011 - 36th International Conference on Infrared, Millimeter, and Terahertz Waves. - 9781457705090
  • Konferensbidrag (refereegranskat)abstract
    • We report on the observation of the terahertz radiation induced edge photogalvanic effect. The directed net electric current is generated in single layer graphene by the irradiation of the samples' edges with linearly or circularly polarized terahertz laser radiation at normal incidence. We show that the directed net electric current stems from the sample edges, which reduce locally the symmetry and result in an asymmetric scattering of carriers driven by the radiation field.
  •  
10.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 19

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy