SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Olefeldt David) ;lar1:(lu)"

Sökning: WFRF:(Olefeldt David) > Lunds universitet

  • Resultat 1-8 av 8
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Olefeldt, David, et al. (författare)
  • The Boreal-Arctic Wetland and Lake Dataset (BAWLD)
  • 2021
  • Ingår i: Earth System Science Data. - : Copernicus Gesellschaft MBH. - 1866-3508 .- 1866-3516. ; 13:11, s. 5127-5149
  • Tidskriftsartikel (refereegranskat)abstract
    • Methane emissions from boreal and arctic wetlands, lakes, and rivers are expected to increase in response to warming and associated permafrost thaw. However, the lack of appropriate land cover datasets for scaling field-measured methane emissions to circumpolar scales has contributed to a large uncertainty for our understanding of present-day and future methane emissions. Here we present the BorealArctic Wetland and Lake Dataset (BAWLD), a land cover dataset based on an expert assessment, extrapolated using random forest modelling from available spatial datasets of climate, topography, soils, permafrost conditions, vegetation, wetlands, and surface water extents and dynamics. In BAWLD, we estimate the fractional coverage of five wetland, seven lake, and three river classes within 0.5 x 0.5 degrees grid cells that cover the northern boreal and tundra biomes (17 % of the global land surface). Land cover classes were defined using criteria that ensured distinct methane emissions among classes, as indicated by a co-developed comprehensive dataset of methane flux observations. In BAWLD, wetlands occupied 3.2 x 10(6) km(2) (14 % of domain) with a 95 % confidence interval between 2.8 and 3.8 x 10(6) km(2). Bog, fen, and permafrost bog were the most abundant wetland classes, covering similar to 28 % each of the total wetland area, while the highest-methane-emitting marsh and tundra wetland classes occupied 5 % and 12 %, respectively. Lakes, defined to include all lentic open-water ecosystems regardless of size, covered 1.4 x 10(6) km(2) (6 % of domain). Low-methane-emitting large lakes (>10 km(2)) and glacial lakes jointly represented 78 % of the total lake area, while high-emitting peatland and yedoma lakes covered 18 % and 4 %, respectively. Small (<0.1 km(2)) glacial, peatland, and yedoma lakes combined covered 17 % of the total lake area but contributed disproportionally to the overall spatial uncertainty in lake area with a 95 % confidence interval between 0.15 and 0.38 x 10(6) km(2). Rivers and streams were estimated to cover 0.12 x 10(6) km(2) (0.5 % of domain), of which 8 % was associated with high-methane-emitting headwaters that drain organic-rich landscapes. Distinct combinations of spatially co-occurring wetland and lake classes were identified across the BAWLD domain, allowing for the mapping of "wetscapes" that have characteristic methane emission magnitudes and sensitivities to climate change at regional scales. With BAWLD, we provide a dataset which avoids double-accounting of wetland, lake, and river extents and which includes confidence intervals for each land cover class. As such, BAWLD will be suitable for many hydrological and biogeochemical modelling and upscaling efforts for the northern boreal and arctic region, in particular those aimed at improving assessments of current and future methane emissions.
  •  
2.
  • Lundin, Erik J, et al. (författare)
  • Is the subarctic landscape still a carbon sink? : Evidence from a detailed catchment balance
  • 2016
  • Ingår i: Geophysical Research Letters. - : American Geophysical Union (AGU). - 0094-8276 .- 1944-8007. ; 43:5, s. 1988-1995
  • Tidskriftsartikel (refereegranskat)abstract
    • Climate warming raises the question whether high-latitude landscape still function as net carbon (C) sinks. By compiling an integrated C balance for an intensely studied subarctic catchment, we show that this catchment's C balance is not likely to be a strong current sink of C, a commonly held assumption. In fact, it is more plausible (71% probability) that the studied catchment functions as a C source (-1120gCm(-2)yr(-1)). Analyses of individual fluxes indicate that soil and aquatic C losses offset C sequestering in other landscape components (e.g., peatlands and aboveground forest biomass). Our results stress the importance of fully integrated catchment C balance estimates and highlight the importance of upland soils and their interaction with the aquatic network for the catchment C balance.
  •  
3.
  • MZOBE, Pearl, et al. (författare)
  • Dissolved organic carbon in streams within a subarctic catchment analysed using a GIS/remote sensing approach
  • 2018
  • Ingår i: PLOS ONE. - : Public Library of Science. - 1932-6203. ; 13:7
  • Tidskriftsartikel (refereegranskat)abstract
    • Climate change projections show that temperature and precipitation increases can alter the exchange of greenhouse gases between the atmosphere and high latitude landscapes, including their freshwaters. Dissolved organic carbon (DOC) plays an important role in greenhouse gas emissions, but the impact of catchment productivity on DOC release to subarctic waters remains poorly known, especially at regional scales. We test the hypothesis that increased terrestrial productivity, as indicated by the normalized difference vegetation index (NDVI), generates higher stream DOC concentrations in the Stordalen catchment in subarctic Sweden. Furthermore, we aimed to determine the degree to which other generic catchment properties (elevation, slope) explain DOC concentration, and whether or not land cover variables representing the local vegetation type (e.g., mire, forest) need to be included to obtain adequate predictive models for DOC delivered into rivers. We show that the land cover type, especially the proportion of mire, played a dominant role in the catchment's release of DOC, while NDVI, slope, and elevation were supporting predictor variables. The NDVI as a single predictor showed weak and inconsistent relationships to DOC concentrations in recipient waters, yet NDVI was a significant positive regulator of DOC in multiple regression models that included land cover variables. Our study illustrates that vegetation type exerts primary control in DOC regulation in Stordalen, while productivity (NDVI) is of secondary importance. Thus, predictive multiple linear regression models for DOC can be utilized combining these different types of explanatory variables.
  •  
4.
  • Mzobe, P., et al. (författare)
  • Morphometric Control on Dissolved Organic Carbon in Subarctic Streams
  • 2020
  • Ingår i: Journal of Geophysical Research - Biogeosciences. - 2169-8953. ; 125:9
  • Tidskriftsartikel (refereegranskat)abstract
    • Climate change has the potential to alter hydrological regimes and to expand saturated areas in permafrost environments, which are important sources of organic carbon. The sources, transfer zones, and delivery mechanisms of carbon into the stream network are controlled by the morphometric properties of the catchment; however, the utility and limitations of these properties as predictors of dissolved organic carbon concentrations have rarely been systematically evaluated. This study tested the relationships between 18 morphometric indicators and observed dissolved organic carbon (DOC) concentrations in the Stordalen catchment, Sweden. Geospatial and explorative statistics were combined to assess the topographical, areal, and linear indicators influencing the distribution of DOC in the catchment. The results suggest that catchment morphometric indicators can be used as proxies to predict DOC concentrations along a longitudinal continuum in subarctic climate regions (R2 up to 0.52). Morphometry indicators that best served as predictors of DOC concentration in the model were as follows: relief, slope length and steepness factor (LS‐factor), sediment transport capacity, and catchment area. Due to the influence that catchment form exerts in DOC spatial patterns and processing, a morphometric approach can serve as a first approximation of DOC spatial patterns within a catchment. The initial step in identifying carbon sources based on the catchment topography has the potential to allow for quick and multilevel comparison within and between catchments.
  •  
5.
  • Olefeldt, David, et al. (författare)
  • Net carbon accumulation of a high-latitude permafrost palsa mire similar to permafrost-free peatlands
  • 2012
  • Ingår i: Geophysical Research Letters. - 0094-8276 .- 1944-8007. ; 39, s. L03501-
  • Tidskriftsartikel (refereegranskat)abstract
    • Palsa mires, nutrient poor permafrost peatlands common in subarctic regions, store a significant amount of carbon (C) and it has been hypothesized their net ecosystem C balance (NECB) is sensitive to climate change. Over two years we measured the NECB for Stordalen palsa mire and found it to accumulate 46 g C m(-2) yr(-1). While Stordalen NECB is comparable to nutrient poor peatlands without permafrost, the component fluxes differ considerably in magnitude. Specifically, Stordalen had both lower growing season CO2 uptake and wintertime CO2 losses, but importantly also low dissolved organic carbon exports and hydrocarbon (mainly methane) emissions. Restricted C losses from palsa mires are likely to have facilitated C accumulation of unproductive subarctic permafrost peatlands. Continued climate change and permafrost thaw is likely to amplify several component fluxes, with an uncertain overall effect on NECB - highlighting the necessity for projections of high-latitude C storage to consider all C fluxes.
  •  
6.
  • Olefeldt, David, et al. (författare)
  • Total waterborne carbon export and DOC composition from ten nested subarctic peatland catchments—importance of peatland cover, groundwater influence, and inter-annual variability of precipitation patterns
  • 2013
  • Ingår i: Hydrological Processes. - : Wiley. - 1099-1085 .- 0885-6087. ; 27:16, s. 2280-2294
  • Tidskriftsartikel (refereegranskat)abstract
    • Waterborne carbon (C) export from terrestrial ecosystems is a potentially important flux for the net catchment C balance and links the biogeochemical C cycling of terrestrial ecosystems to their downstream aquatic ecosystems. We have monitored hydrology and stream chemistry over 3 years in ten nested catchments (0.6–15.1 km2) with variable peatland cover (0%–22%) and groundwater influence in subarctic Sweden. Total waterborne C export, including dissolved and particulate organic carbon (DOC and POC) and dissolved inorganic carbon (DIC), ranged between 2.8 and 7.3 g m–2 year–1, representing ~10%–30% of catchment net ecosystem exchange of CO2. Several characteristics of catchment waterborne C export were affected by interacting effects of peatland cover and groundwater influence, including magnitude and timing, partitioning into DOC, POC, and DIC and chemical composition of the exported DOC. Waterborne C export was greater during the wetter years, equivalent to an average change in export of ~2 g m–2 year–1 per 100 mm of precipitation. Wetter years led to a greater relative increase in DIC export than DOC export due to an inferred relative shift in dominance from shallow organic flow pathways to groundwater sources. Indices of DOC composition (SUVA254 and a250/a365) indicated that DOC aromaticity and average molecular weight increased with catchment peatland cover and decreased with increased groundwater influence. Our results provide examples on how waterborne C export and DOC composition might be affected by climate change. Copyright © 2012 John Wiley & Sons, Ltd.
  •  
7.
  • Pascual, Didac, et al. (författare)
  • The missing pieces for better future predictions in subarctic ecosystems: A Torneträsk case study
  • 2021
  • Ingår i: Ambio. - : Springer. - 0044-7447 .- 1654-7209. ; 50:2, s. 375-392
  • Forskningsöversikt (refereegranskat)abstract
    • Arctic and subarctic ecosystems are experiencing substantial changes in hydrology, vegetation, permafrost conditions, and carbon cycling, in response to climatic change and other anthropogenic drivers, and these changes are likely to continue over this century. The total magnitude of these changes results from multiple interactions among these drivers. Field measurements can address the overall responses to different changing drivers, but are less capable of quantifying the interactions among them. Currently, a comprehensive assessment of the drivers of ecosystem changes, and the magnitude of their direct and indirect impacts on subarctic ecosystems, is missing. The Torneträsk area, in the Swedish subarctic, has an unrivalled history of environmental observation over 100 years, and is one of the most studied sites in the Arctic. In this study, we summarize and rank the drivers of ecosystem change in the Torneträsk area, and propose research priorities identified, by expert assessment, to improve predictions of ecosystem changes. The research priorities identified include understanding impacts on ecosystems brought on by altered frequency and intensity of winter warming events, evapotranspiration rates, rainfall, duration of snow cover and lake-ice, changed soil moisture, and droughts. This case study can help us understand the ongoing ecosystem changes occurring in the Torneträsk area, and contribute to improve predictions of future ecosystem changes at a larger scale. This understanding will provide the basis for the future mitigation and adaptation plans needed in a changing climate.
  •  
8.
  • Tang, Jing, et al. (författare)
  • Drivers of dissolved organic carbon export in a subarctic catchment : Importance of microbial decomposition, sorption-desorption, peatland and lateral flow
  • 2018
  • Ingår i: Science of the Total Environment. - : Elsevier BV. - 0048-9697 .- 1879-1026. ; 622, s. 260-274
  • Tidskriftsartikel (refereegranskat)abstract
    • Tundra soils account for 50% of global stocks of soil organic carbon (SOC), and it is expected that the amplified climate warming in high latitude could cause loss of this SOC through decomposition. Decomposed SOC could become hydrologically accessible, which increase downstream dissolved organic carbon (DOC) export and subsequent carbon release to the atmosphere, constituting a positive feedback to climate warming. However, DOC export is often neglected in ecosystem models. In this paper, we incorporate processes related to DOC production, mineralization, diffusion, sorption-desorption, and leaching into a customized arctic version of the dynamic ecosystem model LPJ-GUESS in order to mechanistically model catchment DOC export, and to link this flux to other ecosystem processes. The extended LPJ-GUESS is compared to observed DOC export at Stordalen catchment in northern Sweden. Vegetation communities include flood-tolerant graminoids (Eriophorum) and Sphagnum moss, birch forest and dwarf shrub communities. The processes, sorption-desorption and microbial decomposition (DOC production and mineralization) are found to contribute most to the variance in DOC export based on a detailed variance-based Sobol sensitivity analysis (SA) at grid cell-level. Catchment-level SA shows that the highest mean DOC exports come from the Eriophorum peatland (fen). A comparison with observations shows that the model captures the seasonality of DOC fluxes. Two catchment simulations, one without water lateral routing and one without peatland processes, were compared with the catchment simulations with all processes. The comparison showed that the current implementation of catchment lateral flow and peatland processes in LPJ-GUESS are essential to capture catchment-level DOC dynamics and indicate the model is at an appropriate level of complexity to represent the main mechanism of DOC dynamics in soils. The extended model provides a new tool to investigate potential interactions among climate change, vegetation dynamics, soil hydrology and DOC dynamics at both stand-alone to catchment scales.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-8 av 8
Typ av publikation
tidskriftsartikel (7)
forskningsöversikt (1)
Typ av innehåll
refereegranskat (8)
Författare/redaktör
Olefeldt, David (8)
Persson, Andreas (4)
Christensen, Torben ... (2)
Pilesjö, Petter (2)
Giesler, Reiner (2)
Tang, Jing (2)
visa fler...
Varner, Ruth K. (2)
Wookey, Philip (1)
McGuire, A. David (1)
Natali, Susan M. (1)
Tank, Suzanne E. (1)
Dorrepaal, Ellen (1)
Hugelius, Gustaf (1)
Karlsson, Jan (1)
Schaedel, Christina (1)
Virtanen, Tarmo (1)
Berggren, M. (1)
Lundin, Erik (1)
Bastviken, David (1)
Hammarlund, Dan (1)
Johansson, Margareta (1)
Emanuelsson, Urban (1)
Smith, Benjamin (1)
Schurgers, Guy (1)
Åkerman, Jonas (1)
Miller, Paul A. (1)
Persson, A. (1)
Berggren, Martin (1)
Michelsen, Anders (1)
Klaminder, Jonatan (1)
Giesler, Reiner, 195 ... (1)
Klaminder, Jonatan, ... (1)
Ström, Lena (1)
Crill, Patrick (1)
Pilesjö, P. (1)
Yan, Y. (1)
Phoenix, Gareth K. (1)
Christensen, Torben (1)
Siewert, Matthias B. (1)
Rinnan, Riikka (1)
Poska, Anneli (1)
Finkelstein, Sarah A ... (1)
Hofgaard, Annika (1)
Karlsson, Jan, 1974- (1)
Crill, Patrick M. (1)
Becher, Marina (1)
Helbig, Manuel (1)
Harris, Lorna I. (1)
Heliasz, Michal (1)
Lundin, E. (1)
visa färre...
Lärosäte
Umeå universitet (5)
Stockholms universitet (4)
Uppsala universitet (2)
Luleå tekniska universitet (1)
Linköpings universitet (1)
visa fler...
Sveriges Lantbruksuniversitet (1)
visa färre...
Språk
Engelska (8)
Forskningsämne (UKÄ/SCB)
Naturvetenskap (8)
Lantbruksvetenskap (1)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy