SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Olsson Richard) ;lar1:(miun)"

Sökning: WFRF:(Olsson Richard) > Mittuniversitetet

  • Resultat 1-10 av 19
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Birdsong, Björn K., et al. (författare)
  • Large-scale synthesis of 2D-silica (SiOx) nanosheets using graphene oxide (GO) as a template material
  • 2023
  • Ingår i: Nanoscale. - : Royal Society of Chemistry (RSC). - 2040-3364 .- 2040-3372. ; 15:31, s. 13037-13048
  • Tidskriftsartikel (refereegranskat)abstract
    • Graphene oxide (GO) was used in this study as a template to successfully synthesize silicon oxide (SiOx) based 2D-nanomaterials, adapting the same morphological features as the GO sheets. By performing a controlled condensation reaction using low concentrations of GO (<0.5 wt%), the study shows how to obtain 2D-nanoflakes, consisting of GO-flakes coated with a silica precursor that were ca. 500 nm in lateral diameter and ca. 1.5 nm in thickness. XPS revealed that the silanes had linked covalently with the GO sheets at the expense of the oxygen groups present on the GO surface. The GO template was shown to be fully removable through thermal treatment without affecting the nanoflake morphology of the pure SiOx-material, providing a methodology for large-scale preparation of SiOx-based 2D nanosheets with nearly identical dimensions as the GO template. The formation of SiOx sheets using a GO template was investigated for two different silane precursors, (3-aminopropyl) triethoxysilane (APTES) and tetraethyl orthosilicate (TEOS), showing that both precursors were capable of accurately templating the graphene oxide template. Molecular modeling revealed that the choice of silane affected the number of layers coated on the GO sheets. Furthermore, rheological measurements showed that the relative viscosity was significantly affected by the specific surface area of the synthesized particles. The protocol used showed the ability to synthesize these types of nanoparticles using a common aqueous alcohol solvent, and yield larger amounts (∼1 g) of SiOx-sheets than what has been previously reported.
  •  
2.
  • Kehoe, Laura, et al. (författare)
  • Make EU trade with Brazil sustainable
  • 2019
  • Ingår i: Science. - : American Association for the Advancement of Science (AAAS). - 0036-8075 .- 1095-9203. ; 364:6438, s. 341-
  • Tidskriftsartikel (övrigt vetenskapligt/konstnärligt)
  •  
3.
  • Wu, Qiong, et al. (författare)
  • Conductive biofoams of wheat gluten containing carbon nanotubes, carbon black or reduced graphene oxide
  • 2017
  • Ingår i: RSC Advances. - : Royal Society of Chemistry. - 2046-2069. ; 7:30, s. 18260-18269
  • Tidskriftsartikel (refereegranskat)abstract
    • Conductive biofoams made from glycerol-plasticized wheat gluten (WGG) are presented as a potential substitute in electrical applications for conductive polymer foams from crude oil. The soft plasticised foams were prepared by conventional freeze-drying of wheat gluten suspensions with carbon nanotubes (CNTs), carbon black (CB) or reduced graphene oxide (rGO) as the conductive filler phase. The change in conductivity upon compression was documented and the results show not only that the CNT-filled foams show a conductivity two orders of magnitude higher than foams filled with the CB particles, but also that there is a significantly lower percolation threshold with percolation occurring already at 0.18 vol%. The rGO-filled foams gave a conductivity inferior to that obtained with the CNTs or CB particles, which is explained as being related to the sheet-like morphology of the rGO flakes. An increasing amount of conductive filler resulted in smaller pore sizes for both CNTs and CB particles due to their interference with the ice crystal formation before the lyophilization process. The conductive WGG foams with CNTs were fully elastic with up to 10% compressive strain, but with increasing compression up to 50% strain the recovery gradually decreased. The data show that the conductivity strongly depends on the type as well as the concentration of the conductive filler, and the conductivity data with different compressions applied to these biofoams are presented for the first time.
  •  
4.
  • Bettelli, Mercedes, et al. (författare)
  • Sustainable Wheat Protein Biofoams : Dry Upscalable Extrusion at Low Temperature
  • 2022
  • Ingår i: Biomacromolecules. - : American Chemical Society (ACS). - 1525-7797 .- 1526-4602. ; 23:12, s. 5116-5126
  • Tidskriftsartikel (refereegranskat)abstract
    • Glycerol-plasticized wheat gluten was explored for producing soft high-density biofoams using dry upscalable extrusion (avoiding purposely added water). The largest pore size was obtained when using the food grade ammonium bicarbonate (ABC) as blowing agent, also resulting in the highest saline liquid uptake. Foams were, however, also obtained without adding a blowing agent, possibly due to a rapid moisture uptake by the dried protein powder when fed to the extruder. ABC's low decomposition temperature enabled extrusion of the material at a temperature as low as 70 °C, well below the protein aggregation temperature. Sodium bicarbonate (SBC), the most common food-grade blowing agent, did not yield the same high foam qualities. SBC's alkalinity, and the need to use a higher processing temperature (120 °C), resulted in high protein cross-linking and aggregation. The results show the potential of an energy-efficient and industrially upscalable low-temperature foam extrusion process for competitive production of sustainable biofoams using inexpensive and readily available protein obtained from industrial biomass (wheat gluten). 
  •  
5.
  • Bjurstrom, Anton, et al. (författare)
  • A Review of Polyolefin-Insulation Materials in High Voltage Transmission; From Electronic Structures to Final Products
  • 2024
  • Ingår i: Advanced Materials. - : Wiley. - 0935-9648 .- 1521-4095.
  • Forskningsöversikt (refereegranskat)abstract
    • This review focuses on the use of polyolefins in high-voltage direct-current (HVDC) cables and capacitors. A short description of the latest evolution and current use of HVDC cables and capacitors is first provided, followed by the basics of electric insulation and capacitor functions. Methods to determine dielectric properties are described, including charge transport, space charges, resistivity, dielectric loss, and breakdown strength. The semicrystalline structure of polyethylene and isotactic polypropylene is described, and the way it relates to the dielectric properties is discussed. A significant part of the review is devoted to describing the state of art of the modeling and prediction of electric or dielectric properties of polyolefins with consideration of both atomistic and continuum approaches. Furthermore, the effects of the purity of the materials and the presence of nanoparticles are presented, and the review ends with the sustainability aspects of these materials. In summary, the effective use of modeling in combination with experimental work is described as an important route toward understanding and designing the next generations of materials for electrical insulation in high-voltage transmission. 
  •  
6.
  • Holder, Shima L., et al. (författare)
  • Solubility and Diffusivity of Polar and Non-Polar Molecules in Polyethylene-Aluminum Oxide Nanocomposites for HVDC Applications
  • 2020
  • Ingår i: Energies. - : MDPI AG. - 1996-1073. ; 13:3, s. 722-
  • Tidskriftsartikel (refereegranskat)abstract
    • The best commercial high-voltage insulation material of today is (crosslinked) ultra-pure low-density polyethylene (LDPE). A 100-fold decrease in electrical conductivity can be achieved by adding 1–3 wt.% of well-dispersed inorganic nanoparticles to the LDPE. One hypothesis is that the nanoparticle surfaces attract ions and polar molecules, thereby cleaning the surrounding polymer, and thus reducing the conductivity. LDPE-based nanocomposites with 1–12 wt.% octyl-coated aluminum oxide nanoparticles were prepared and the sorption and desorption of one polar compound (acetophenone, a crosslinking by-product) and one non-polar compound of a similar size (limonene) were examined. Since the uptake of acetophenone increased linearly with increasing filler content, whereas the uptake of limonene decreased, the surface attraction hypothesis was strengthened. The analytical functions for predicting composite solubility as a function of particle size and filler fraction were derived using experimental solubility measurements and Monte Carlo simulations.
  •  
7.
  • Hoogendoorn, Billy W., et al. (författare)
  • Formation of Different Zinc Oxide Crystal Morphologies Using Cellulose as Nucleation Agent in the Waste Valorization and Recycling of Zn-Ion Batteries
  • 2023
  • Ingår i: Rare Metal Technology 2023. - Cham : Springer.
  • Konferensbidrag (refereegranskat)abstract
    • The formation of zinc oxide particles of different hierarchical morphologies was investigated. By performing elemental analysis on samples extracted from the supernatant solution during precipitations yielding two distinctly different morphologies, the consumption of zinc ions was used to follow the liquid-to-solid phase formation. While a rapid Zn-ion consumption was synonymous with the formation of predominantly oxygen terminated flower-shaped ZnO-particles, with half of the zinc ions being precipitated during the first minute, less than 10% of the zinc ions were converted to sea urchin-shaped ZnO-particles (with mixed terminations) after 1 min of the reaction. The unique ZnO-particle morphologies may therefore be related to the precipitation rates, which can be further explored as a tool for understanding how ZnO-particles with differently facetted surfaces form. Interestingly, the different formation rates remained with identical patterns when 0.5 g/L cellulose (0.005 wt%) was added to the reactions as nucleating agent for improved yields. The controlled formation of specific functional ZnO-particle surfaces is an important method for recycling inexpensive zinc waste from batteries to high value materials useful in a variety of catalytic applications.
  •  
8.
  • Karlsson, Mattias E., et al. (författare)
  • Lamellae-controlled electrical properties of polyethylene - morphology, oxidation and effects of antioxidant on the DC conductivity
  • 2020
  • Ingår i: RSC Advances. - : Royal Society of Chemistry. - 2046-2069. ; 10:8, s. 4698-4709
  • Tidskriftsartikel (refereegranskat)abstract
    • Destruction of the spherulite structure in low-density polyethylene (LDPE) is shown to result in a more insulating material at low temperatures, while the reverse effect is observed at high temperatures. On average, the change in morphology reduced the conductivity by a factor of 4, but this morphology-related decrease in conductivity was relatively small compared with the conductivity drop of more than 2 decades that was observed after slight oxidation of the LDPE (at 25 degrees C and 30 kV mm(-1)). The conductivity of LDPE was measured at different temperatures (25-60 degrees C) and at different electrical field strengths (3.3-30 kV mm(-1)) for multiple samples with a total crystalline content of 51 wt%. The transformation from a 5 mu m coherent structure of spherulites in the LDPE to an evenly dispersed random lamellar phase (with retained crystallinity) was achieved by extrusion melt processing. The addition of 50 ppm commercial phenolic antioxidant to the LDPE matrix (e.g. for the long-term use of polyethylene in high voltage direct current (HVDC) cables) gave a conductivity ca. 3 times higher than that of the same material without antioxidants at 60 degrees C (the operating temperature for the cables). For larger amounts of antioxidant up to 1000 ppm, the DC conductivity remained stable at ca. 1 x 10(-14) S m(-1). Finite element modeling (FEM) simulations were carried out to model the phenomena observed, and the results suggested that the higher conductivity of the spherulite-containing LDPE stems from the displacement and increased presence of polymeric irregularities (formed during crystallization) in the border regions of the spherulite structures.
  •  
9.
  • Liu, Dongming, 1987-, et al. (författare)
  • Influence of Nanoparticle Surface Coating on Electrical Conductivity of LDPE/Al2O3 Nanocomposites for HVDC Cable Insulations
  • 2017
  • Ingår i: IEEE transactions on dielectrics and electrical insulation. - : IEEE. - 1070-9878 .- 1558-4135. ; 24:3, s. 1396-1404
  • Tidskriftsartikel (refereegranskat)abstract
    • LDPE/metal oxide nanocomposites are promising materials for future high-voltage DC cable insulation. This paper presents data on the influence of the structure of the nanoparticle coating on the electrical conductivity of LDPE/Al2O3 nanocomposites. Al2O3 nanoparticles, 50 nm in size, were coated with a series of silanes with terminal alkyl groups of different lengths (methyl, n-octyl and n-octadecyl groups). The density of the coatings in vacuum was between 200 and 515 kg m(-3,) indicating substantial porosity in the coating. The dispersion of the nanoparticles in the LDPE matrix was assessed based on statistics for the nearest-neighbor particle distance. The electrical conductivity of the nanocomposites was determined at both 40 and 60 degrees C. The results show that an appropriate surface coating on the nanoparticles allowed uniform particle dispersion up to a filler loading of 10 wt.%, with a maximum reduction in the electrical conductivity by a factor of 35. The composites based on the most porous octyl-coated nanoparticles showed the greatest reduction in electrical conductivity and the lowest temperature coefficient of electrical conductivity of the composites studied.
  •  
10.
  • Liu, Sirui, et al. (författare)
  • Design of Hygroscopic Bioplastic Products Stable in Varying Humidities
  • 2023
  • Ingår i: Macromolecular materials and engineering. - : Wiley. - 1438-7492 .- 1439-2054. ; 308:2
  • Tidskriftsartikel (refereegranskat)abstract
    • Hygroscopic biopolymers like proteins and polysaccharides suffer from humidity-dependent mechanical properties. Because humidity can vary significantly over the year, or even within a day, these polymers will not generally have stable properties during their lifetimes. On wheat gluten, a model highly hygroscopic biopolymer material, it is observed that larger/thicker samples can be significantly more mechanically stable than thinner samples. It is shown here that this is due to slow water diffusion, which, in turn, is due to the rigid polymer structure caused by the double-bond character of the peptide bond, the many bulky peptide side groups, and the hydrogen bond network. More than a year is required to reach complete moisture saturation (≈10 wt.%) in a 1 cm thick plate of glycerol-plasticized wheat gluten, whereas this process takes only one day for a 0.5 mm thick plate. The overall moisture uptake is also retarded by swelling-induced mechanical effects. Hence, hygroscopic biopolymers are better suited for larger/thicker products, where the moisture-induced changes in mechanical properties are smeared out over time, to the extent that the product remains sufficiently tough over climate changes, for example, throughout the course of a year.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 19
Typ av publikation
tidskriftsartikel (17)
konferensbidrag (1)
forskningsöversikt (1)
Typ av innehåll
refereegranskat (16)
övrigt vetenskapligt/konstnärligt (3)
Författare/redaktör
Hedenqvist, Mikael S ... (17)
Olsson, Richard (11)
Olsson, Richard T. (6)
Gedde, Ulf W. (4)
Gubanski, Stanislaw, ... (3)
Johansson, Eva (2)
visa fler...
Karlsson, Mattias E. (2)
Diaz, A. (1)
Holler, M. (1)
Forsberg, Kerstin, 1 ... (1)
Rothhaupt, Karl-Otto (1)
Pourrahimi, Amir Mas ... (1)
Weigend, Maximilian (1)
Müller, Jörg (1)
Karlsson, Mattias (1)
Farrell, Katharine N ... (1)
Müller, Christian, 1 ... (1)
Islar, Mine (1)
Krause, Torsten (1)
Uddling, Johan, 1972 (1)
Alexanderson, Helena (1)
Schneider, Christoph (1)
Battiston, Roberto (1)
Lukic, Marko (1)
Pereira, Laura (1)
Riggi, Laura (1)
Cattaneo, Claudio (1)
Jung, Martin (1)
Andresen, Louise C. (1)
Kasimir, Åsa (1)
Wang-Erlandsson, Lan (1)
Yu, Shun (1)
Sutherland, William ... (1)
Boonstra, Wiebren J. (1)
Pourrahimi, A. M. (1)
Vajda, Vivi (1)
Roth, Stephan V. (1)
Wu, Qiong (1)
Pascual, Unai (1)
Tscharntke, Teja (1)
Brown, Calum (1)
Peterson, Gustaf (1)
Meyer, Carsten (1)
Seppelt, Ralf (1)
Johansson, Maria (1)
Martin, Jean Louis (1)
Pallon, L. K. H. (1)
Ström, Valter (1)
Olsson, Urban (1)
Hortal, Joaquin (1)
visa färre...
Lärosäte
Kungliga Tekniska Högskolan (18)
Chalmers tekniska högskola (6)
Sveriges Lantbruksuniversitet (4)
Lunds universitet (1)
Språk
Engelska (19)
Forskningsämne (UKÄ/SCB)
Teknik (14)
Naturvetenskap (12)
Samhällsvetenskap (1)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy