SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Olsson T) ;mspu:(doctoralthesis)"

Sökning: WFRF:(Olsson T) > Doktorsavhandling

  • Resultat 1-3 av 3
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Nigro, Claudio F., Dr. (författare)
  • Phase-field modeling of stress-induced precipitation and kinetics in engineering metals
  • 2020
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • The formation of brittle compounds in metals operating in corrosive environments can be a tremendous source of embrittlement for industrial structures and such phenomenon is commonly enhanced in presence of stresses. To study this type of microstructural change modeling is preferred to experiment to reduce costs and prevent undesirable environmental impacts. This thesis aims at developing an engineering approach to model stress-induced precipitation, especially near stress concentrators, e.g. crack tips, for multi-phase and polycrystalline metals, with numerical efficiency.In this thesis, four phase-field models are developed and applied on stress-induced hydride precipitation in zirconium and titanium alloys. The energy of the system is minimized through the time-dependent Ginzburg-Landau equation, which provides insights to the kinetics of the phenomenon. In these models, the driving force for precipitation is the coupling between the applied stress and the phase transformation-induced dilatation of the system. Models 1-3 implicitly incorporate near crack-tip stress fields by using linear elastic fracture mechanics so that only the phase-field equation is solved numerically with the finite volume method, reducing the computational costs. Phase transformation is investigated for intragranular, intergranular and interphase cracks in single- and two-phase materials by considering isotropy and some degrees of anisotropy, grain/phase boundary energy, different transition orders and solid solubility limit. Model 4 allows representing anisotropy connected to lattice mismatch and the orientation of the precipitates influenced by the applied stress. The model is employed through the finite element program Abaqus, where the fully coupled thermo-mechanical solving method is applied to the coupled mechanical/phase-field problem. Hydride growth is observed to follow the near-crack tip hydrostatic stress contours and can reach a steady state for specific conditions. The relation between hydride formation kinetics and material properties, and stress relaxation are well-reflected in the results.With the presented approaches, precipitation kinetics including different kinds of defects, multi-phase microstructures, phase/grain boundaries, order transitions and loading modes can be successfully captured with low computational costs. They could therefore contribute to the numerical efficiency of multi-scale environment-assisted embrittlement prediction schemes within commercial software serving engineering projects. 
  •  
2.
  •  
3.
  • Ye, Xinchen (författare)
  • Materials Based on Protein Nanofibrils
  • 2021
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • Protein nanofibrils (PNFs) prepared from whey protein isolate (WPI) at low pH and elevated temperature were processed into materials, i.e. hydrogels, films, foams, and fibres, for different applications where they could potentially be sustainable alternatives to petroleum-based polymers. WPI was chosen as the starting material due to the high accessibility of whey as an industrial side-stream product from cheese manufacturing, and its ability to easily grow PNFs.PNFs grown in the presence of different metal ions were generally curved and short, and they formed hydrogels, in contrast to the straight ones fibrillated without metal ions. The effect of metal ions with different acidity was systematically studied with respect to fibrillation kinetics and gelation behaviour. The protein fibrillation was accelerated by the addition of metal ions. The strength of the hydrogel increased with increasing acidity of the metal ion at the same ion concentration, as long as the ion did not precipitate as hydroxide/oxide. Protein nanocomposite films were prepared by adding separately grown PNFs into a non-fibrillar protein matrix from the same WPI starting material. The glycerol-plasticized composite films obtained an increased elastic modulus and decreased strain at break with increasing content of PNFs. The produced PNF foams showed high-temperature resistance during aging at 150 °C for as long as one month (maximum testing time), far exceeding the properties of many petroleum-based thermoplastics. The aged foams were also able to retain their properties in different solutions that normally degrade/dissolve protein materials.PNFs were also organized into microfibres using a flow-focusing method. Genipin was added as a natural crosslinker to improve the mechanical properties of the obtained fibre. The crosslinked fibre (using only 2% genipin) obtained a significantly higher stiffness and strength at break as compared to the fibre assembled without genipin. 
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-3 av 3

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy